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IN REPLY REFER TO: WESYV 1 May 1978

SUBJECT: Transmittal of Techmical Report D-77-6 (Appendix B)

T0: All Report Recipients

1. The technical report transmitted herewith represents the results of
one of several research efforts (work units) undertaken as part of Task
1A, Aquatic Disposal Field Investigations, of the Corps of Engineers'
Dredged Material Research Program. Task 1A is a part of the Environ-
mental Impacts and Criteria Development Project (EICDP), which has as a
general objective determination of the magnitude and extent of effects
of disposal sites on organisms and the quality of surrounding water, and
the rate, diversity, and extent such sites are recclonized by benthic
flora and fauna. The study reported on herein was an integral part of a
series of research contracts jointly developed to achieve the EICDP
general objective at the Eatons Neck Disposal Site, one of five sites
located in several geographical regions of the United States. Conse-
quently, this report presents results and interpretations of but one of
several closely interrelated efforts and should be used only in conjunc-
tion with and consideration of the other related reports for this site.

2. 'This report, Appendix B: Water-Quality Parameters and Physico~
chemical Sediment Parameters, is one of six contractor-prepared appen-
dices published relative to the Waterways Experiment Station Technical
Report D-77-6 entitled: Aquatic Disposal Field Investigations, Eatons
Neck Disposal Site, Long Island Sound. The titles of all appendices of
this series are listed on the inside front cover of this report. The
main report will provide additional results, interpretations, and con-
clusions not found in the individual appendices and will provide a
comprehensive summary and synthesis overview of the entire project.

3. The purpose of this study, conducted as Work Unit 1A06B, was to
determine the baseline water column and sediment water quality and the
physicochemical properties of the Eatons Neck Dispcsal Site, located at
the western end of Long Island Sound. The report includes a discussion
of the water-column distribution of dissolved and particulate metals



WESYV 1 May 1978
SUBJECT: Transmittal of Technical Report D-77-6 (Appendix B)

and nutrients and other water-column properties within and in the
vicinity of the disposal site. Water-column properties were determined
through seven oceanographic cruises during fall, winter, and gpring
seasons, Sediment physicochemical conditions as related to past dumping
at the site were evaluated through three sediment-coring cruises. Bulk
and soluble sediment concentrations of metals and nutrients in the dump
site are contrasted to reference sites out of the influence of the
dumping area. Sediment textural, mineralogical, and other physico-
chemical properties are also evaluated.

4, Water-column studies showed no effect of past dumping at this site
and any variation in water—~column parameters could be explained by
factors other than the presence of dredged material. There were no
significant differences between reference stations and the disposal site
for sediment mineralogy, bulk metal concentrations, soluble metals, oil
and grease, and cation exchange capacity. Sediment ammonia, organic
carbon, organic nitrogen, and pH were higher at the dump site relating
to higher organic matter content and resultant degradation products of
the dump site. Effects of past dredged material disposal on nutrients,
metals, and related parameters in the Sound are minimal and are for the
most part overshadowed by the effects of sewage effluents and other
inputs from river discharge.

5. The baseline evaluations at all of the EICDP field sites were
developed to determine the base or ambient physical, chemical, and
biological conditions at the respective sites from which to determine
impacts due to the subsequent disposal operaticns. Where the dump site
had historical usage, the long-term impacts of dumping at these sites
could also be ascertained. Controlled disposal operations at the Eatons
Neck Dispoesal Site, however, did not occur due to local opposition to
research activities and even though the Eatons Neck project was terminate
after completion of the baseline evaluation, this information will be
useful in evaluating the impacts of past disposal at this site. The
results of this study are particularly important in determining place-
ment of dredged material for open-water disposal. Referenced studies,
as well as the ones summarized in this report, will aid in determining
the optimum disposal conditions and site selection in relation to the
water and sediment quality of the historical dump site and surrounding

areas.

JOHN L. CANNKON
Colonel, Corps of Engineers
Commander and Director
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be controlled by precipitation of their respective sulphide
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Total concentrations of metals show a positive correlation
with the organic fraction of sediment.

Pb, Cu, Zn, Ni, and Mn show association with total iron con-
tent of sediment.
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PREFACE

This report presents the results of an investigation to
determine the baseline conditions of the macrofauna and
meiofauna at an established disposal site off Eatons Neck,
Long Island, New York,

The study was supported by the U. $. Army Engineer
Waterways Experiment Station (WES), Environmental Effects
lLaboratory (EEL), Vicksburg, Mississippi, under Contract
No. DACW51-75-C-0016 with the Marine Sciences Research Cen-
ter, State University of New York, Stony Brook, New York.
The report forms part of the Dredged Material Research Pro-
gram, which is sponsored by the Office, Chief of Engineers.
Contracting was handled by the New York District (NYD);

COL Thomas C. Hunter, CE, NYD, was contracting officer.

The following New York Ocean Science Laboratory per-
sonnel assisted in all phases of the research project: G. E.
Carroll, R. Dayal, I. W. Duedall, M. T. Eisel, G. S.
Grunseich, G. L. Hulse, A. D. Hamilton, P. J. Harder,

K. Henrickson, D. J. Hirschberg, J. F. Lekan, G. L. Lynch,
C. J. Marks, W. A, Miloski, J. W. Moren, H. B.

O'Connors, Jr., S. A. Oakley, R. A. Olson, J. H. Parker,
J. M. Restivo, A. S. Robbins, J. R. Schubel, H. C. Stuebe,
G. M. Weik, W. M. Wise, and C. R. Zeppie.

The study was conducted under the direction of the
following EEL personnel: Dr. R. M. Engler, Environmental
Impacts and Criteria Development Manager, and James Reese,
Site Manager. The study was under the general supervision
of Dr. John Harrison, Chief, EEL.

Directors of WES during the study and the preparation
of this report were COL G. H. Hilt, CE, and COL J. L.

Cannon, CE. Technical Director was Mr. F. R. Brown.



CONCENTRATION UNITS, CONVERSION FACTORS,
U. S. CUSTOMARY TO METRIC (SI}) UNITS OF MEASUREMENT

Concentration units in this work are the following:

Water Column Properties Units

Nutrients (ammonium, nitrite, nitrate, MM
phosphate, silicic acid)}¥*

Urea¥* UM
Dissolved organic carbon mg/1
Dissolved metals ng/1
Particulate metals ng/l
Particulate organic carbon ng/1
Particulate organic nitregen rg/1
Chlorophyll a Hg/l
Suspended solids mg/1

Sediment Properties

Nutrients (ammonium, nitrite, nitrate, umMm
phosphate, silicic acid)*

Dissolved metals in pore waters ug/1

Total dissolved organic carbon mg/1

Total metals in sediment g/ g

Total cation exchange capacity meq/g of

dry sediment

Particulate organic carbon g (wt)

Particulate organic nitrogen % (wt)

Oil and Grease % (wt)

Conversion factors

U. S. customary units of measurement used in this report can be
converted to metric (SI) units as follows:

Multiply By To Obtain
feet 0.3048 meters
ounces {mass) 28.34952 grams
pounds (force) per 6894,757 pascals

square inch

pM ammonium = 14 pg N/1
uM nitrite = 14 ug N/1

WM nitrate = 14 ug N/1
phosphate = 31 ug P/1

uM silicic acid = 28 pug Si/1
pM urea = 14 pg N/1

e
=
=

ii



SUMMARY

Seven oceanographic cruises and three sediment coring
cruises, which took place between October 30, 1974 and May
29, 1975, were conducted in western Long Island Scund to
assess the baseline water column and sediment properties
near the Eatons Neck disposal site. The following points
summarize our main findings:

1. Seasonal spatial distributions of NH4+ and NO3_
show that both the East River as well as the
lateral embayments are important nitrogen sources

to the western portion of Long Island Sound.

2. Increased water column stability coincided with
increased chlorophyll a concentration.

3. Seasonal depth and water column averages of NH4+
and NO showed nitrogen depletion in the surface

3
layer.

4, Observed seasonal concentrations of N03_ were
similar to those measured by Gordon Riley (1955},
but higher concentrations occurred later in the
vear, as did the phytoplankton bloom.

5. Observed PO43_ concentrations were seasonally
elevated over those determined by Gordon Riley (1955)
by about 1 uM.

6. Depletion of Si(OH)4 colncided with that of
NO3 .

7. Maximum concentrations of particulate Cu, Fe,
and Zn occurred with high chlorophyll a concen-

trations.

i1ii
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11,

12,

13.

14.

15.

leé.

Maximum concentrations of particulate Mn and Pb
occurred with the maximum concentration of par-
ticulate carbon and nitrogen.

The Eatons Neck region of Long Island Sound is an
+
4 ¥
particulate carbon, suspended solids, particulate

area of strong seasonal gradients of 8°/,,, NH

Pb, Ag, and chlorophyll a.

The sediments in the Eatons Neck area of Long
Island Sound are generally silty with pockets of
high sand and clay concentrations.

Fine-fraction mineralogy consists of illite,
chlorite, kaolinite, and montmorillonite with minor
amounts of feldspars and quartz.

No significant mineralogical variations were ob-
served with increasing depth of burial.

For most sediment cores, the concentrations of Pb,

Cu, Zn, Cd and Hg exhibit a stepwise decrease with

increasing depth of sediment burial. Fe, Mn and Ni,

however, show irregular vertical distribution
patterns.

Sediment interstitial metal data indicate that the
vertical distribution patterns of Pb, Cu, and Zn
in sediments may not be controlled by precipitation
of their respective sulphide phases.

Total concentrations of metals show a positive
correlation with the organic fraction of sediment.
Pb, Cu, Zn, Ni and Mn show association with total
iron content of sediment.

iv



CONTENTS

PREFACE. . 4 « 2 2 o 2 o » o o + s s 2 s s s s & s = s = 1

CONCENTRATION UNITS, CONVERSION FACTORS, U. 5. CUSTOMARY
TO METRIC (SI) UNITS OF MEASUREMENT, « « « ¢ « « « & ii

SUMMARY . . - - - - - - - - - - - L] . L] . - . - . - - . iii

l...J

PART I: INTRODUCTION. . o o o s o o 2 = o o o s o « = @

Purpose and SCOPE. « 4 « o o o o« o o o o o =+ o s o =
Literature RevVieW. « o« + o o« o o s a s s o o « + = =

1
1
Hydrography and circulation . « « ¢ « « ¢« o + & 1
Nutrient and organic carbon distributions . . . 6
Oxygen distribution . . + + . + « ¢« « + « « . . 9
Heavy metal distribution. . . . « « ¢« « « « .« . 10
Sediments in Long Island Sound. . « « « « + » . 12
Solid-waste disposal in Long Island Sound . . . 14

PART II: SAMPLING AND ANALYTICAL METHODS. . . + . = . lo
SAMPLIINGg v v v v 4 4 v 4 4 4 v e e e e e e e e e .. 16
Water column. . .+ ¢ & v 4 4 ¢ v o &« « o o« « « . 1o
Sedimente ¢ 4 ¢ 4 v 4 4 4 4 e e e e e e e e . . 16
Shipboard TeStiNg. + ¢ v o « « o & o« o o« « o o &« « o 20
Water Column AnalySe€S. . v « v + v v o o o o o « « o 25

Nutrient analysis . . ¢« v +« v 4 v & v o o« o « . 25
Chlorophyll a extraction. . . + « o v o « » o . 25
Dissolved organic carbon. . « « ¢« v« v o « o« . . 25
Particulate organic carbon and nitrogen , . . . 26
Dissolved and particulate metals. . . . . . . . 26
Suspended matte@r. . o v + 4 v 4 + 4 4 4 e . o . 26
Particulate size analysis . . . . . . . . . . . 26

Sediment AnalySe€S. . 4 « « & = o 4 o + « o o « o o+ . 26

Sediment coring . . . . .+ & v v ¢ 4 4 4 4 . . . 26
Pore water extraction . . « v v v o o & o o o . 27
Interstitial metals . . + ¢ v v v o o o o o . o 27
Interstitial nutrients. . .« « + « « v o o o . . 28
Sediment texture. . . .+ 4 & &4 2 « « o « &+ « » . 28
Particulate € and N . + ¢ «v ¢« v 4 v v v 4 o o 30
Total Sulfides. . v v & ¢ 4 & & o o v v o o . 30
Percent water . . . ¢ 4 ¢« 4 v 4 2 4 4 4 o o . . 3
Clay-fraction mineralogy. « « « + « « & + « . . 31
Bulk mineralogy « « « o « » . P K¢ |
Trace metal analysis of bulk samples. S 1
Total cation exchange capacity. . « o & o « o . 35
Oil and greas€. . « « v & &+ o o « + « o « »« » o 35



PART III: RESULTS AND DISCUSSION. . . o o « o s & =

Water Column Properties. . . « v ¢« v v ¢ « o« o o

Precision and sampling variability. . . . .
Variability over a tidal c¢ycle. . « « .+ . .

ACE 1. v o 4 o v o v o o o 4 2 4 s s s
ACE II-VII . 4 o o o o o o & o & o s o

Horizontal and vertical distribution
of water propertiegs . . . . .« ¢ + ¢ o o .

Temperature and salinity . . . . « . .
Percent dissolved oxygen saturation. .
AMMONIUNM o 4 + & « « + & « o = s = &
Nitrate. o« o« o ¢ o« « o o v o o o « &
Dissolved PO43~ concentrations . . . .
Silicic acid v v ¢« ¢ 4 v ¢ o 4 2 4 . »
Particulate carbon . . « ¢« ¢« ¢« « « o« .
Particulate nitrogen . « . . « . . . .
Chlorophyll a. + & & & = « = o o & o &
Suspended s011ds . . v 4 .+ 4 4 e 4 . .
Suspended metals . . . . . .« . . . . .

Sediment Geochemistry. . + « « ¢ « ¢« o & o« = o+ =

Water content . . . . .+ + o ¢ ¢« & v & o «
TeXtUre .« o o o v o« o o o o & o & o s = « &
PH=Eh | . . . . . ¢ i i i e e e e e e e e s
Mineralogy. « « &« o o « o » o o « o « = & =
Particulate nitrogen and carbon . . . . . .
0il and Grease. « v v o « o o o+ & o + o « =
Cation exchange CapacitV. « o« o « s o « « =
Total and dissolved metals. . « « -« « « . .

Sediment « v v v ¢ e . e . s e e o &

Interstitial nutrient concentrations. . . .
PART IV: SUMMARY OF RESULTS .« &« & o & + s o o s # =

Seasonal and Depth Distribution of the Important
Water Column Data. « o v & & o o s o &+ o« o o« &
Evaluation of Proposed Dispocsal Site Relative to
Control Site in Terms of Sediment Properties .

Sediment texture and mineralogy . . . . . .
Chemistry . « ¢ & v v & & & o o o o « o« o «

Summarized Interpretation of Sediment Geochemistry

Data Based on Correlation Coefficient Matrix .

APPENDIX A': SAMPLING AND ANALYTICAL PROCEDURES USED FOR

THE DETERMINATION OF TRACE HEAVY METALS. . . . . =

APPENDIX B': WATER COLUMN OBSERVATIONS DURING CRUISES
ACE II, ACE I1II1I, ACE IV, ACE V, ACE VI, AND ACE VII

REFERENCES + ¢ & ¢ & ¢ ¢ ¢ ¢ o o o o « s o o s+3 o

vi

- -

37

37

37
40

40
56

63

63
70
70
76
80
85
89
93
93
100
110

110

110
110
122
1z7
i23
146
146
147

147
187

189

189

196
196
196

197

208

240
313



AQUATIC DISPOSAL FIELD INVESTIGATIONS
EATONS NECK DISPOSAL SITE, LONG ISLAND SOUND
APPENDIX B: WATER-QUALITY PARAMETERS AND
PHYSTCOCHEMICAL SEDIMENT PARAMETERS

PART I: INTRODUCTION

Purpose and Scope

1. This report presents the principal findings of the
investigation of water column and sediment properties at the
Eatons Neck disposal site, located at the western end of Long
Island Sound (Figure 1). The investigation was primarily
descriptive and was conducted to provide baseline properties
from which the effects of future controlled dredged material
disposal on the marine environmental quality of the western
sound could be assessed.

2. This report includes: (1) a literature review
of Long Island Sound, (2) the analytical methods used in
the work, and (3) a description and discussion of general

features observed in the study area.

Literature Review

Hydrography and circulation

3. The growth of commerce and the need for adequate
data for navigation as well as engineering and scientific
work in Long Island Sound created an early need for up-to-
date and comprehensive information on the sound's hydrog-
raphy, tides and currents. LeLacheur and Sammonsl collected
tide and current data from as early as 1835 and used Coast
and Geodetic Survey data from cruises conducted in 1929 and
1930 to publish a comprehensive work on the tides and
currents of Long Island and Block Island Sounds.

4. Riley2 reported temperature and salinity data

collected on nine Woods Hole Oceanographic Institution
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Figure 1. Eatons Neck disposal site study area:

{a) existing disposal site, and (b)
extended disposal site established for

the contreolled dredged material experi-
ment.



cruises conducted between January 1946 and January 1947.
Using these data and additional information from the U. S.
Coast and Geodetic Survey (now the National Ocezan Survey)
concerning tidal currents and freshwater drainage, drift
bottle data from Prytherch,3 plus freshwater inflow data
from Suttie,4 Riley2 was able to (1) show some seasonal
temperature and salinity distributions, (2) calculate sur-
face density distributions, and (3) infer tidal and nontidal
surface current patterns. Riley2 alsc computed water trans-
port values, assuming the conservation of mass and salt
within the sound, and discussed turbulent mixing and eval-
uated coefficients of lateral eddy diffusivity and vertical
eddy conductivity. Expanding his sampling program, Rileys’6
continued his investigation of the distribution of temper-
ature and salinity as well as east-west mass transport,
vertical eddy conductivity, and transparency in Long Island
Sound. Riley7 published a brief review of his findings and
elaborated further on aspects of the oceanography of the
sound, based on earlier investigations, especially water
exchange as computed by the salt balance method. With re-
spect to water properties and transport processes, Riley7
emphasized the nontidal circulation which results in a two-
layered system in which a freshened surface layer moves
eastward out of the sound but is replaced by the input of
higher salinity water along the bottom.

5. Hardy8 and Hardy and Wey19 reported observations
gathered in 1969 and 1970 on the hydrography and water quality
of Long Island Sound. These two reports are essentially data
reports containing very little interpretation. In April and
August, 1971, HardylO made further oceanographic observations
in the sound and presented a detailed description of the
distribution of dissolved oxygen, nutrients, and other water

properties and their relation to wind, weather, circulation,



and bottom topography. Hardy found that winter-formed
bottom water exhibited a seasonal lag in warming in the
central basin of the sound and that the persistence into

the summer of this colder, more dense bottom layer would
indicate limited mixing. Additionally, Hardy suggested

that the stagnation of this bottom water is promoted by:

{1) the seasonal formation of a weak to moderate thermocline
and (2) the inhibition of exchange with Block Island Sound
due to the presence of the Mattituck sill which separates
the central and eastern basins of Long Island Sound. Hardy
observed maximum nutrient concentrations in the East River
and western Long Island Sound and proposed a two layer trans-
port system to explain how East River pollutants enter the
sound.,

6. Gross and Bumpusll released seabed drifters in
eastern and western Long Island Sound in January, March,
and October, 1969, and observed that in the eastern sound
the residual drift of near-bottom waters was dominantly
westward with a northerly component toward the Connecticut
coast, the location of major freshwater sources. In the
western sound, they also observed the drifterxs to move west-
ward; this was attributed to an estuarine flow caused by
inflow of low salinity water from the East River.

7. Paskausky and Murphy12 also examined the residual
drift in the sound based on the recovery of surface and bottom
drifters released between March, 1973 and January, 1974. They
observed an estuarine circulation in the eastern sound
throughout the year although two periods of distinctly
differing residual drift correlated with wind and freshwater
discharge variation. Their results showed that during
the summer period the westward flux of near-bottom water does
not extend into the central sound past the Mattituck sill

which separates the central and eastern basins of the sound.



However, during the winter season the near-bottom waters
moved well into the central sound. They found little evidence
to suggest a significant near bottom exchange between the
western and central socund.

8. Wilsonl3 calculated, based on the field work of
Hardyg’g, that longitudinal salinity and associated density
gradients maintain a non-tidal two layer gravitational circu-
lation which is well developed in the western and central
sound and intensely developed in the eastern sound. Wilson
calculated volume transports which varied from approximately
500 m°> sec”! in the western sound, to 5,000 m3/sec in the
central basin, to approximately 30,000 m3/sec in the eastern
sound. The calculated transports were reported not to vary
significantly with season, although Wilson found that circula-
tion for 20-30 January, 1969, was least developed and that
for 9-13 August, 1971, was most developed. Wilson concluded
that gravitational circulation contributes to rapid exchange
between waters of the eastern sound and those of the central

and western sound.

9. Swanson14 made current observations during a 15-32
day period in August-September, 1966 at four stations situated
over a north-south cross section in the central sound. Three
stations with concurrent l5-day records were selected for
analysis of tidal constituents. The major currents were semi-
diurnal, tidal flows and were reported to be greatly influ-
enced by topography. The mid-channel flow was found to be
rotary. The observations further indicated that maximum ebb
occurs along the shore before it does in mid-channel. Swanson
also observed a very pronounced lead in both the maximum ebb
and flood along the Connecticut shoreline, as compared to the
southern half of the sound in the cross section.

10. Gordon and Pilbeaml5 have measured, for periods as
long as over one year between October, 1971 and September,

1973, the tidal and nontidal components of near hottom water



movements in central Long Island Sound. They found that
higher salinity bottom waters at depths greater than 20 m
flow upstream at a rate that decreases toward the head of the
estuary. At depths shallower than 20 m, they observed a
shoreward flow of bottom water toward a complex mixing zone
whose origin seems to be associated with Six Mile Reef. They
also observed a layer of less-saline surface water whose flow
was generally to the southeast.

11. Recently Weyll6 has reviewed the tides and tidal
currents in Long Igland Sound. Weyl reports that the tidal
oscillation in the sound is approximately one-quarter of a
standing wave with the node near the Race and the antinode
near the western end of the sound. Weyl also reports that the
tide is close to synchronous in the central and western por-
tions of the sound but can be represented by a westerly
progressive wave in the eastern portion. Using the amplitude
and time relationship of the variation in tidal height, Weyl
computed the mean east-west tidal water motion through north-
south sections in the sound. Weyl found that during an
average tide, about 5.5 km3, or about %% of the volume of the
sound, 1is replaced. During spring and neap tides, 6.5 km3 and
4.4 km3 of water are exchanged, respectively.

Nutrient and organic carbon distributions

12, Riley and Conover17 reported chemical oceanographic
data in Long Island Sound during the period 1952-1954., Their

investigations revealed the major features of the seasonal

3 and PO43_ concentrations in the sound. During

the spring phytoplankton blooms of 1953 and 1954, NO3
almost completely exhausted in about 3 weeks but about 0.5 uM

cycles in NO
was

of PO43_ remained in the water. NO3 remained low until
3_

September, while PO4 tended to increase gradually during the
summer and then more rapidly in autumn. Both P043_ and NO3“
were observed to increase slightly from surface to bottom
during most of the spring and summers of 1952 and 1953; slight

and variable vertical gradients were observed in autumn and



winter seasons. In the autumn, 1952, an east-west gradient

in both NO3_ and PO43_ was opserved in the surface. However,
no discernible horizontal gradients were observed during the
summer period, due to the nearly exhausted layels of these
nutrients. Riley and Conover suggest that the presence of a
two-layered transport system helps explain the nutrient dis-
tribution: a two-layered system gradually removes the nutri-
ent-poor surface layer while it is the bottom water that brings
in nutrients,

13, Riley18 used observed distributions of oxygen and
PO43_ to calculate net bilological rates of change of oxygen
and phosphorous on a seasconal basis. These changes were then
converted to estimates of total plant production and utiliza-
tion of organic matter by marine organisms. Riley reports
that the total annual fixation of carbon by photosynthesis is
estimated to be about 470 g/m 3, Over half of this carbon is
utilized in phytoplankton respiration; of the remainder, 26%
was used by those zooplankton that pass through a No. 10 mesh
net, 43% by microzooplankton and bacteria in the water column,
and 31% by the benthic fauna and flora.

14 . Harris and Riley19 analyzed plankton samples col-
lected in the sound during 1952-1954 for wet- and dry-weight,
ash, chlorophyll, total phosphorcous, and nitrogen. Riley
reported that phytoplankton samples showed seasonal variations
in ash content which could be explained by changes in the
relative abundances of certain species. Chlorophyll also
showed variations which were attributed to adaptation of the
phytoplankton to seasonal changes in illumination.

15. Riley20 made measurements of total organic matter
in water samples collected in Long Island Sound during January-
December, 1956. Concentrations of total organic matter ranged
between 1.2 and 3.1 mg/l during the period of study. Riley
suggested that a considerable fraction of the organic matter
in the sound occurs as detritus or as organisms containing

little or no chlorophyll.



21
16 . Harris made observations on the concentrations of

NH4+, NO., , and NO. , plus particulate nitrogen and dissolved

organic iitrogen ig Long Island Sound from Octeober 1954 to
June 1955. He observed that the seasonal nitrogen cycle was
gualitatively similar in different parts of the sound except
for small differences associated with the time of the early
phytoplankton bloom. He noted a strong horizontal total in-
organic nitrogen gradient, with maximum concentrations of all
fractions at the western end of the sound. Daily nitrogen
enrichment, averaged for the entire sound, by freshwater
drainage during the winter and spring was about 0.04 umole
N per cmz. However, as Harris points out, 75% of the total
input of freshwater is localized in the eastern sound and thus
the effective enrichment elsewhere in the sound was estimated
to be only about 0.01 umole/cmz. Nitrogen transport from New
York harbor at the western end of the sound was considered
important locally, but was found to be only one-tenth of that
of the total river drainage.

17 - Hardy22 discussed the impact and seasonal vari-
ability of NO3_, Nozj and NH4t and seasonal concentrations
of chlorophyll at the western end of the sound. During the
winter, when phytoplankton production is least active, the
rate of addition of nitrogenous wastes exceeds the rate of
biological uptake which causes an accumulation of inorganic
nitrogen, mainly in the form of NH4+, at the western end of
the sound. Hardy reports winter NH4+ concentrations that
exceed 10 UM near Hempstead Harbor; near the Throgs Neck
Bridge, NH ¥ concentrations are in excess of 20 uM. In the

4
summer, however, the NH * concentrations are greatly reduced

due to biclogical activgty and typical NH4+ values near
Hempstead Harbor are reported by Hardy to be in the 1-5 uM
range,

18 . Bowman23 investigated the distributions and trans-

port of NH4+, Noz_, and NO3“ in Long Island Sound for both



winter and summer conditions using a steady state, one dimen-
sional mass balance model. The nutrient budgets were based on
horizontal exchange, lateral input from sewage and agricultur-
al sources, and first-order biochemical uptake (utilization
minus regeneraticn). Bowman has shown that sewage effluents
are the prime external source of nutrients for the sound and
that there is a continual loss of nitrogen to the sediment in
the sound wvia zooplankton grazing, excretion, and mortality.
Oxygen distribution

19. Hardy and Wey124 give the only detailed description
of dissolved oxygen in Long Island Sound. Their investigation,
based on surveys during the periods 7-15 August and 5 October
1970, covers the region between Brothers Island (East River)
eastward through Long Island Sound to Port Jefferson {Long
Island}. During the August period, they observed a serious
oxygen depletion, where the oxygen concentrations were less
than 1.5 mg/l throughout the entire water column of the upper
East Riwver and also in the bottom waters of western Long
Island Sound. In contrast, the surface waters of a consider-
able portion of western Long Island Sound were reported to be
supersaturated with oxygen to a depth of 2 to 3 meters; oxygen
supersaturation occasionally was over 200% of saturation. By
October, the bottom oxygen concentrations in the sound (but
not the East River) had increased to acceptable levels of 7-8
mg/1l.

20, Weyll6 describes the oxygen depletion in western
Long Island Sound as primarily a summer problem. He gives the
following reasons: " (1) in summer, the temperature is near
its maximum and the solubility of oxygen in the water is there-
fore at its annual minimum; (2) in summer, vertical density
stratification is also at its maximum, reducing vertical
mixing; (3) the rate of respiration by bacteria and cold-

blooded animals (e.g. fish) increases as the temperature



increases. Therefore the rate of respiration is at a maximum
in summer. In addition, many species of fish migrate into
the sound during warm months and further increase the summer
respiration rate."

Heavy metal distribution

21 ., The concentration and distribution of heavy metals in
Long Island Sound waters are probably influenced by anthropo-
genic inputs originating from (1} Connecticut and Long Island
rivers and streams (Turekianzs) and shore-based sewage treat-
ment plants; (2) sewage and industrial effluents discharged
into the East River and other waters adjacent to the New York
metropolitan region (Mytelka et al.,26 Klein et al.,27 Inter-
state Sanitation Commission28); and {3) dégposal of waste

).

22 , There has been no systematic study to determine the

solids in Long Island Sound (Gross et al.

distribution of dissoclved or particulate heavy metals in Long
Island Sound. Turekian25 has reviewed the concentrations of
trace metals in the Connecticut and Housatonic Rivers and has
discussed the fate of Co, Ni, and Ag in the western and
central basin of Long Island Sound. Turekian reports that:
"l. Trace elements injected intc the streams in soluble form
are adsorbed rapidly but on suspended particles. This is best
seen in the case of the Naugatuck River where the high cobalt
and silver concentration as the result of industrial injec-
tion north of Naugatuck diminishes downstream so that where
the Naugatuck River joins the Housatonic River it is as low
in trace-element concentration as the Housatonic.

2. Some trace elements seem to be injected by industry
either directly into the Sound or through small streams before
adsorption on suspended material takes place.

3. At the mouth of the Housatonic, as the salinity of the
Sound is approached, the trace-element content increases

dramatically. This may be interpreted to mean either that

10



there is release of the trace elements adsorbed by the sus-
pended material on contact with seawater as shown by the
experiments of Kharkar et al.3O [see reference 25] discussed
above or that there is peculiarly high release on these metals
into the mouth of the Housatonic by local industry. Of the
two explanations, the first seems more probable because the
effect is seen by all the elements and industry is not unique-
ly associated with the mouth of this river.

4. A short distance away from the sources of injection of
trace elements into the Sound, by whatever means, they are
apparently removed from the dissolved state by planktonic
organisms.

5. Some of the plankton undoubtedly disintegrates on the
bottom or on the way to the bottom, and local pockets of high
trace-element concentrations in the water are encountered at
depth on the western side of the Sound.

6. Most of the trace elements, however, are removed and re-
tained in the reducing sediments of the Sound since the
solubility of the sulfides of the metals would be exceeded
in the sediments of the Sound with the production of HZS'

The sediments of Long Island Sound are very high in silt, yet
the silver content is about 1pg/g which implies some concen-
tration above average shales (0.1ng/qg) .

7. The water leaving Long Island Sound (that above 20 ft for
a large part of the Sound, Riley, 1956 [see reference 5 ] is
less than or equal to the concentration of trace elements in
the deeper water entering the Sound from the ocean indicating
that little or none of the trace-element load supplied by
streams (reinforced by the strong contribution from industry)
leaves the Sound but is trapped in the sediments depositing
there."

23. Fitzgerald et al.

tions of Cu, Zn, Ni, and Cd in eastern Long Island Sound.

31 have determined the concentra-

11



They have also developed a preliminary mass balance model for
Cu and Zn for the sound; the model shows good agreement be-
tween input and output of these metals, suggesting a steady-
state for the amounts of these metals in the water column.
Significant removal of the metals was reported to occur
through biological and geochemical processes and by rapid
water renewal in the eastern sound. Additionally, they re-
port that a large fraction of Cu and possibly other metals,
including Hg, brought into the sound from the Connecticut
River appear to be bound to organic matter.

Sediments in Long Island Sound

24 . A general description of sediment distribution in
Long Island Sound has been reported by McCrone et al.32 and
Buzas33. McCrone34 published a brief review of the physical
and chemical properties of these sediments. He reported that
silts prevail in the sediments from western Long Island Sound,
with the fine-fraction mineralogy dominated by illite and
chlorite. _

25 . Bokuniewicz et al.35 used sonic reflection profil-
ing and bottom sampling to measure the volume of sediments
accumulated in Long Island Sound. Their sediment mass balance
calculations show that this volume of sediment consists of
marine mud, sediment of premarine, lacustrine origin and re-
worked sand derived from glacial drift. They reported that
Long Island Sound acts as a trap, not only for material
carried by rivers but for suspended material in the water on
the continental shelf. Inward transport of mud from outside
of the sound has been proposed as the principal source of the
muddy sediment presently accumulating in Long Island Sound.
Deposits south of Marthas Vinyard and in the Gulf of Maine
are believed to be the possible sources of the mud.

26 . A recent study, covering a small area of investi-

gation in eastern Long Island Sound, of the mineral
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composition, sediment distribution, pathways of sediment move-
ment, and sedimentation rate has been published by Akpati.36
Of interest is the observaticon that the offshore sands in the
area are characterized by quartz grains with ocherons hamatite
stains, with stained quartz decreasing landward. The shore-
ward decrease in stained quartz has been attributed to a
dilution effect by unstained quartz grains from land or may
indicate an offshore contribution of this mineral, presumably

transported in the sound by the prevalent landward bottom

current,

27 . Thomson et al. (In Turekian37) studied the vertical
distribution of PbZlO, Ra226, U234, U238, Th228, Th23q and
Th232 as well as Pb, Zn, Cd, and Mn in sediment cores from

central Long Island Sound. On the basis of their results,
they were able to determine the modes aﬁd rates of accumu-
lation of metals over time in sediments of central Long Island
Sound and the patterns of their release, Their results also
indicate that U, and possibly Mn, may be remobilized from
sediments to the overlying water column.

28 . Fitzgerald et al.3l in their model for the distri-
bution and fluxes of Cu and Zn in Long Island Sound indicates
that about 90% of the Cu and Zn entering the sound annually
is removed to the sediments., They further report that more
than 80% of the Cu and Zn input to the sound appears to be
anthropogenic in origin.

29 . Martens and Berner38 studied the relation between
methane and dissolved sulphate distributions in the inter-
stitial waters of organic-rich sediments in central Long
Island Sound. They reported that in the interstitial waters
of anoxic sediments from the sound methane does not reach
appreciable concentrations until dissolved sulfate concentra-
tions are considerably lowered.

30 . Aller and Cochran39 234

238

used Th/ U diseguilibrium

13



in sediment to evaluate short-term sediment reworking and

diagenetic rates. Thelr results of seasonal measurement of
234Th/238

ment show rapid particle reworking in the upper 4 cm of

U disequilibrium in central Long Island Sound sedi-

sediment, with the rate varying seasonally and being highest
in the fall.

Solid-waste disposal in Long Island Sound

31 . According to Gross40 and Gross et al.,4l thirteen
offshore sites are actively used for disposal of solid wastes
in Long Island Sound in which an average of l.9x106 metric
tons of waste solids are disposed in western Long Island
Sound annually.

32 . Table 1 gives the volume of dredged material dis-
posed at the Eatons Neck disposal site from 1954 to 1972.*
Unfortunately, there are no available data on the composition
of the dredged material.

33 . O'Connor42 has reviewed the dredging and disposal
activity in the shore zone of Nassau and Suffolk counties on
Long Island. According to O'Connor, most of the activity has
been conducted at the margins of Great South and Peconic Bays,
principally for maintenance dredging of navigation channels
and development of the shore zone for residential and commer-
cial purposes; a marked reduction in dredge/spoil activity
occurred in 1968.

34 . Gordon4J has studied the dispersion of dredged
material disposed in waters near New Haven Harbor. He found
that 99% of non-cohesive spoil of high silt discharged from a
skow 1n the presence of a tidal stream was transported to the
bottom as a high speed turbulent jet. The thickness of the
bottom cloud was about 5 m. After about 26 minutes, the
turbidity of the water 5 m from the bottom site was nearly

at background levels,

* D. Suszkowski, personal communication.
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Table 1

Volume of Dredged Material Disposed

at Eatons Neck Disposal Site

Year Volume (m3)
1955 7,630
1956 84,400
1957 100,000
1958 98,000
1959 650,000
1960 266,000
1961 129,000
1962 192,000
1963 3,860,000
1964 2,100,000
1965 138,000
1966 999,000
1967 428,000
1968 446,000
1969 102,000
1970 38,000
1971 84,000

15



PART II: SAMPLING AND ANALYTICAL METHODS

Sampling

Water column

35 . The sampling grid (Figure 2} consisted of 26
stations and was designed to observe larger scale spatial
and seasonal variations in the water properties in a broad
region of western Long Island Sound surrounding the Eatons
Neck disposal site.

36 . The following transects formed the station grid:
Z=X; 5-Q; EK-G; P-L; and W-T. Transect K-G covered the pro-
posed experimental disposal site, and station A was the
control site. A transect consisting of the stations V, A,

D, R, and Y provided a longitudinal section.

37 . Figure 3 shows continuous sounding records along
each transect.

38 . The stations were sampled sequentially through
any particular transect aboard the RV ONRUST. It usually
took 2 days to sample the grid. The sampling depths were
every 2 m for suspended solids and every 4-6 m for the other
variables.

39 , In addition to the above sampling, another
sampling procedure, used during the first 2 cruises, involved
an intensive 24-hr study of stations, A, B, C, D, E, F, G, H,
J, and K. Here the purpose was to obtain an estimate of
variability in water column properties over a tidal cycle
within the disposal site.

40 , Stations DSA and DSB were sampled during March,
April, and May when it was learned that these two sites had

been proposed for future dredged material disposal experiments.

41 . Table 2 is a summary of the water column cruises.
Sediment
42 . The sediment sampling consisted of 17 coring

16
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Table

2

Water Column Cruises

Cruise Date
ACE I 30-31 Oct 1974
1 Nov 1974
ACE II 5 Dec 1974
6 Dec 1974
ACE IIT 13 Jan 1975
14 Jan 1975
ACE 1V 19 Feb 1975
20 Feb 1975
ACE V 19 Mar 1975
20 Mar 1975
21 Mar 1975
ACE VI 23 Apr 1975
24 Apr 1975
ACE VII 28 May 1975
29 May 1975
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stations (Figure 4) in which 10 stations were located
within the proposed experimental disposal site. The dense
sampling grid in the experimental disposal site was chosen
to give detailed information on the spatial variability of
sediment properties. Stations were located by sextant and
radar.

43. Table 3 gives the dates, station locations, and
depth of water for each sampling station. On 22 April, cores
at DSA-1, -2, -3, and -4 were taken on a circle of a radius
of about 100 m from DSA. In addition, duplicate cores were
collected at stations A (A-1 and A-2), O (0-1 and 0-2), and
DSA (DSA-A and DSA-B) [see Table 3].

Shipboard Testing

44, The Hulse system (Plunket)44 was used to measure
temperature, salinity, oxygen, and in vivo chlorophyll a
fluorescence. This system is a shipboard, semi-automated,
data acquisition system in which seawater is continuously
pumped from depth, via a submersible pump, to a manifold
(located inside the ship) which directs water to various
sensors (Figures 5 and 6 illustrate the Plunket).

45, The thermistor sensor, with a specified accuracy
of + 0.05°C, located near the submersible pump, permitted
in situ temperature recording at each sample depth.

46. The salinity sensor was a Bisset-Berman
Salinograth having a specified accuracy of + 0.01°/.,.

47. Dissolved oxygen was measured with a YSI elec-
trode which was calibrated according to the Pprocedure outlined
by Hulse.44

48. The in vivo chlorophyll fluorescence was measured
with a Turner:™ (Model 110) fluorometer and was used primarily
as a diagnostic indicator to locate chlorophyll maxima and

minima in the water column.
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TABLE 3

Dates of Sediment Coring Cruises

Cruise Date Station Designation®*r*#

ACE CORE I 4 Nov 1974 A (26), B (63), C (37),
D (41), F (31), G (25),
J (23}, R (30), O (22)

ACE CORE 1II 15 Jan 1975 A (26)***, B (63), C (37},
D (41), F (31}, G (25},
J (23), R (31), O (22)#*%*%*,
EB-1 (39}, EB-3 (23),

EB-4 (32), EB-5 (26),

EB-8 (26), EB~12 (25)

ACE CORE III 22 Apr 1975 A (26), D {(41), DSA (24,1)%%*,
DSA-1 (24), DSA~2 (24),
DSA-3 (24), DSA-4 (24),
DSB (31)

*See Figure 4.
**Numbers in brackets represent depth of water in meters,.
*¥**PDuplicate cores collected were as follows: A-1, A-2,
0-1, 0-2, DSA-A, and DSA-B.
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Water Column Analyses

Nutrient analysis

49. Glass~-fiber filtered (8-um porosity) water samples

for NH4+, NO NO PO

2 7 37 4 7
collected in 125-ml polyethylene bottles from the Plunket.

and Si(OH)4 were

Immediately after collection, these samples were stored
under ice until they could be analyzed in the laboratory.
Urea samples were collected in 250-ml glass bottles and
immediately frozen.

50. Ni,",
of dissclved NH3,
tion using a TechniconR Autoanalyzer 1I and an indophenol

method.

which includes about 5 percent by weight
was determined 20 to 30 hr after collec-

51. NOZ_, NO3—, PO43F, and Si(OH), were
determined4® from 2 to 3 days after each cruise using a
TechniconR Autoanalyzer I1 system.

52. Because of the complexity of the urea analyses,
all urea samples were analyzed in one batch run using a

47 A TechniconR

modification of the method by McCarthy.
Autoanalyzer II system was used to determine urea plus
ammonia in ingested samples. The urea concentration was
thus found by difference.

Chlorophyll a extraction

53, The concentration of chlorophyll a was measured

trichromatically and fluorometrically46

using acetone ex-
tracts of the pigment. An ultrasonic probe was used in the
extraction procedure in a darkened room to rupture the cells
previously collected on the MilliporeR filters.

Dissoclved organic carbon

54, Glass-fiber filtered (8-um porosity) water samples
for dissolved organic carbon (DOC) were collected in 250-mil

glass bottles from the Plunket spigot. Imnmediately after
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collection, each sample was frozen until the analysis could
be performed in the laboratory. A Beckman organic carbon
analyzer (Model 915) was used for the analysis. Weighed
samples of potassium phthalate were used as the calibration
standard. Each sample was acidified with HCl to pH 2-3 and
then agitated to remove the dissolved inorganic carbon.

Particulate organic carbon and nitrogen

55. Samples for particulate carbon and nitrogen
determination were collected on (0.8-um nominal porosity)
glass—-fiber filters. The volume of water filtered varied
from 50 to 100 ml. The filters were stored frozen until the
analysis could be performed. A Hewlett-Packard CHN analyzer
(Model 185) was used for the analysis. The combustion tem~
perature was 1140°C, and acetanalide was used as the standard.

Dissolved and particulate metals

56. Samples for metals analysis were collected using
10-% Niskin top-drop PVC samplers. Because of the complexity
and the importance of the metal analyses, a complete descrip-
tion of the methods used is given in Appendix A'.

Suspended matter

57. Samples for gravimetric analysis of suspended
matter were collected in 500-ml glass bottles from the Plunket
spigot. These samples were filtered in the laboratory using
pre-weighed 0.8-um Nuclepore (47 mm diameter) filters; the
filter was dried in a desiccator and then reweighed.

Particulate size analysis

58. Water samples for particulate-size analysis were
collected from the Plunket spigot and immediately filtered

onboard the research vessel.

Sediment Analyses

Sediment coring

59, Sediment cores were obtained with a cellulose

acetate butyrate core liner using a Benthos Model 2171
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gravity corer., Any metal parts that could introduce contamina-
tion, such as core catcher and cutting nose cone of the corer,
were not used. Immediately after recovery of the core, the
core liner was sealed with end caps to prevent oxidation and
allowed to stand in an upright position for half an hour.
After draining the overlying water, the cores were extracted
from the core liners by extruding the core with a plunger.
Each core was cut into the top 10-cm and lower 20-cm sections.
The pH of each core section was measured on shipboard. The
core sections were stored in plastic bags at 5 + 4°C for
further sediment analysis.

Pore water extraction

60. Reeburghf18 type squeezers were used to extract the
pore water out of sediment samples. Subsamples from each core
section were placed in the sediment holder of the squeezer and
the pore water was extracted under a pressure of 10-150 psi
using helium gas. In a period of 2 hr, about 40-120 ml of
pore water was collected in acid-cleaned 180-ml polyvethylene
bottles. About 20 ml of the extracted pore water was frozen

for the analysis of NH4+, NO. , NO. Po43", Si (OH) and DOC.

3 r 2 r 4I
The remaining pore water sample was acidified with concentrated
HCl and stored at 4°C for the analysis of dissoglved Pb, Zn, Cu,
Fe, Mn, and Ni.

Interstitial metals

61, Pb, Cu, and Ni in extracted pore water samples
were analyzed by flameless atomic absorption spectrophotometry
following solvent extraction. Fe, Mn, and Zn were analyzed by
directly aspirating the sample solution into the air-acetylene
flame. The concentrations of these metals in pore water
samples were high enough to be detected by the flame. The
details of the method, the range of analytical precision, the

limit of detecticon, and the sensitivity for each metal
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analyzed using the air-acetylene flame method are given in
Appendix A'.
Interstitial nutrients

62. The analysis of NH4+, NO

_' PO 3_, and Si(CH) , was
3 4 4 46
carried out by the Autcanalyzer using conventional methods.
DOC was determined using a Beckman Carbon Analyzer.

Sediment texture

63. Analyses of grain-size distribution were performed
on all sediment core sections by sieving and pipetting accord-
ing to standard sample preparation and analytical techniquesfl9
The limits and names of size grades used in this study are:
gravel, for particles coarser than 2 mm; sand, for particle
diameters between 2 and 0.063 mm. For material finer than
0.063 mm, the term mud is used. Mud is composed of silt
particles ranging in size from 0.063 to 0.002 mm in diameter
and clay particles finer than 0.002 mm in diameter. The
nomenclatural system used to describe the texture of the sedi-
ment is similar to that of Folk.50 Samples containing between
5 and 30 percent are indicated by an adjective (sandy) and
those over 30 percent qualify as nouns (sand). If two com-
ponents represent more than 30 percent, the finer-grained
component is indicated by a noun, the other by an adjective
with the adverb 'very'. The grain-size distribution data are
presented on ternary plots with the sand, silt, and clay being
the end components. In cases where appreciable amounts of
gravel were present, the clay and silt were grouped together
as mud, with the other two end components being gravel and
sand on the ternary plots. The presentation of grain-size
distribution data in this form enables one to identify the
sediment texture immediately. An example of such a graphic

presentation of grain-size data is shown in Figure .
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Particulate C and N

64. Particulate C and N were determined on dried
sediment subsamples using a CHN analyzer.
Total sulfides

65. Total sulfides consists of soluble sulfides in

pore water and authigenic sulfide minerals., The sample
storage and handling procedures were all designed to prevent
oxidation of the sample. Subsamples of wet sediment (approx-
imately 50 g) from each core section were placed, on shipboard,
in a preweighed wide-mouth flask containing 150 ml of dilute
zinc acetate solution. The flasks were flushed with nitrogen
gas to displace air and then lightly stoppered. Zinc acetate
solution was added to precipitate the dissolved sulfide phase
into an insoluble form. In the laboratory, the flask was
guickly opened and the sample acidified by the addition of

10 ml of sulfuric acid. The solid rubber stopper was replaced
with a similar one containing a bubbler stone and an outlet
tube, which was inserted into the suspended sample.

66, With continuous stirring to maintain the sediment
particles in suspension, the evolved hydrogen sulfide gas was
forced with a carbon dioxide carrier into two collection
vessels, connected in series, containing dilute zinc acetate
solution. The evolved hydrogen sulfide gas reacted with zinc
acetate solution to form a white precipitate of zinc sulfide.
After 1 hr, the contents of the two collection vessels were
quantitatively transferred to a large flask. A solution of
0.025 N iodine solution was added in excess of the amount
needed to react with the precipitated sulfide.

67 . After acidifying the solution with HC1l, the excess
iodine was back titrated with standardized sodium thiosulfate
solution using starch as an indicator. At the end point, the
amount of thiosulfate added is equivalent to the amount of

excess iodine in solution, and the quantity o¢of iodine required
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to react with the sulfide can be found by difference. Chem-
ical yield of the system was checked by direct titration of an
aliquot of zinc sulfide solution. It was found to be greater
than 98 percent. Precision and chemical yield were monitored
by running standards of dilute sodium sulfide solution after
every 10 samples. The precision of the method was found to

be better than + 10 percent in terms of relative standard
deviation for three replicate analyses on standards. Sulfides
were determined on samples from the dredge spoil site only.

Percent water

68. The mass perxcent water of each core section was
determined gravimetrically by drving at 70°C until the weight
was constant.

Clay-fraction mineralogy

69. All top core sections were chosen for clay minera-
logical analysis. In addition, the subsurface samples at
stations A, D, and F were also analyzed to study possible
diagenetic clay mineral transformation with increasing depth
of sediment burial, Following grain-size analygis of these
samples, the clay fraction (finer than 2 um) was collected for
x-ray diffraction analysis.

70, Gibbs51 showed that of all the commonly used
methods of preparing oriented mounts for quantitative clay
mineral studies, only three were acceptable with regard to
accuracy and precision. These three are smear-on-glass slide,
suction~on-ceramic-plate, and powder-press techniques. This
study used the suction-on-ceramic-plate method discussed by
Carlton.52 Porous unglazed ceramic tiles were purchased from
Coors Porcelain Co., Golden, Colorado. The ceramic tile
holder was similar in design to that described by Carlton.’?

71. An aliquot of clay suspension was poured on the
porous tile and the assembly fitted to a vacuum pump. The

short time redquired for complete suction (5-10 min} did not
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allow preferential settling of the clay particles according
to their size., X-ray diffractograms were obtained from the
oriented mounts of clay-size fraction treated in the follow-
ing manner: (1) untreated and (2) solvated overnight in a
dessicator with ethylene glycol vapour at 60°C.

72. The samples were run on a Picker diffractometer
using Cu ka radiation at 40 kV and 20 mA. A monochromator
set was used to screen out the K-beta radiation. The untreated
samples were scanned from 2° to 30°26 also at fast scan con-
ditions. Glycolated samples were scanned from 2° to 13° 26
also at fast scan conditions. 1In order to resolve the (004)
chlorite and (002) kaolinite doublet at 3.5 %, the samples
were scanned from 25.5° to 24.0°28 at slow scan speed.

FAST SCAN CONDITIONS 2°26 - 30°26
Scan Speed 1°26/min
Chart Speed 1"/min
Slit wWidth 0.02 mm

Diff. Time constant 2 | sec

Range lxlo3 counts per second
Analyzer Baseline 1.31 V
Window 1.72 V
SLOW SCAN CONDITIONS 25.5°26 - 24.0°2@
Scan Speed 0.25°268/min
Chart Speed 1"/min
81it width 0.01 mm
Diff. Time constant 2 u sec

Range lxlO3 counts per second
Analyzer Baseline 1.31 V
Window 1.72 v
73. Illite was identified by a strong 10 ! and a weak
5  reflection. Fe-chlorite was identified by weak first-
(14 R) and third-(4.7 &) order basal reflections and strong
second- (7 ﬂ) and fourthm(3.53) order reflections.53 Chlorite

reflections were unaffected by glycolation, Glycolation of
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the samples resulted in the appearance of a weak peak in the
17 % region indicating the presence of montmorillonite.
Presence of a 3.58 R reflection on the slow scan diffracto-

i

gram showed that kaolinite was present. Minor amounts of
quartz and feldspar were also detected in the clay fraction.

74. Quantitative estimates of clay mineral abundances
were determined by measuring the peak areas of the 7 2
(chlorite + kaolinite), 10 & (illite), and 17 & (montmor-
illonite) reflections on the diffractogram of a glycolated
sample. The abundance of each mineral was expressed with
respect to the total mineral composition. The weighting
factors used were 17 R glycolated peak for montmeorillonite,
four times the 10 % glycolated peak for illite, and twice
the 7 & glycolated peak for chleorite and kaclinite (Biscaye54)'
The R peak, common to both kaolinite and chlorite, was divided
between the two in proportion to the fraction of each mineral
in the total area under the resolved 3.5 R kaolinite-chlorite
doublet on the slow scan diffractogram. The four weighted
peak areas were added, and the weighted peak area of each
mineral multiplied by 100 and divided by the sum of the areas
t0 give the percentage of each mineral.

Bulk mineralogy

75. Ten cores were selected and their top 10-cm
sections analyzed for bulk mineralogy. The subsamples were
oven~-dried and ground to a uniform fine powder in a ball mill.
The interstitial salt was removed by mixing about 2 g of sample
with 20 ml of distilled water in an Erlenmeyer flask, homo-
genizing the sample for 30 min on an automatic shaker, then
centrifuging off the water.2” Mineralogical analyses of bulk
samples were performed by x-ray diffraction employing the same
instrument settings described for clay mineral analysis, but

using random mounts of the dry powders and scanning from 1° to
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60°28 at 2°28/min. The random mounts were prepared according
to the method described by Carroll.”® The following minerals
were identified: quartz with all characteristic reflections
from 4.26 % (100) to 1.54 8 (211); orthoclase with major
reflections at 3.79 8 (130), 3.28 8 (202), and 3.22 & (002);
plagioclase with reflections at 4.03 R (201) and 3.20 R (002);
the (110) reflection of amphibole at 8.4 R; (001) muscovite
reflections at 10.0 R, 4,99 g, and 1.99 R and (hkl) reflec-
tions at 4.49 %, 2.98 8, and 2.56 ]; chlorite (001) reflec-
tions at 14.2 &, 7.1 &, 4.75 &, 3.56 %,and 2.85 &, and (hkl)
reflection at 2.53 &; and other clay minerals that have been
previously described. Bulk samples are composed principally
of gquartz and feldspar with only minor amounts of amphiboles
and clay minerals.

Trace metal analysis of bulk samples

76. A sample of 2.5 g of oven-dried, finely-ground
bulk sediment was weighed in an acid-cleaned 4-oz polyethylene
bottle. The sample was digested in 10 ml of concentrated
nitric acid on a sand bath at 80°C for 2 hr. The warm sample
was filtered using Millipore filtration apparatus and the
sediment residue was washed three times with 10-ml aliquots of
distilled water. The filtrate and wash solution were collect-
ed in a 50-ml volumetric flask and the total volume was
brought to 50 ml with distilled water. The resulting solu-
tion was analyzed for Cd, Zn, Pb, Cu, Fe, Mn, and Ni by
atomic absorption spectrophotometry. The method of analysis
for Hg is discussed in Appendix A'. Also given in Appendix
A' are the analytical precision, detection limit, and sensi-

tivity for each metal.
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Total cation exchange capacity

77. Total cation exchange capacity (TCEC) is expressed
as the sum of major exchangeable cations (Na+ + K+ + Mg2+
+ Ca2+) in meq per 100 g of dry sediment. Determination of

exchangeable cations was accomplished by replacing Na+, K+,

Ca2+, and Mg2+ with NH4+. A subsample of 0.5 g of oven-dried
sediment was placed on a 0.45-um filter. The sample was then
leached with three 10-ml aliguots of neutral 1 M ammonium
acetate solution followed by two 10-ml washings with neutral
distilled water. The leachate was diluted to 50 ml and
analyzed for Na+, K+, Ca2+, and M92+ by atomic emission
techniques. Np suction was applied during filtration to en=-
sure long leaching times and complete replacement of exchange-
able cations. Leaching times were usually greater than 10
ml/hr, depending upon the grain size of the sample. The
precision of the method was found to be better than + 10 per-
cent for four determinations.

0il and grease

78. 01l and grease were determined using a simplified

ether extraction method.56

Approximately 10 g of oven-dried,
finely-ground sediment subsample was weighed into a 125-ml
screw-top flask. Ten ml of ethyl ether was added to the
sample and the flask allowed to shake for 18 to 20 hr on a
shaker table. The extracted hydrocarbons were collected in a
preweighed aluminum dish. The sediment residue was rinsed
several times with small aliquots of ethyl ether and the wash
solution collected in the same aluminum dish. The extracted
solution collected in the same aluminum dish was allowed to
evaporate to dryness overnight and the aluminum dish containing
the residue was reweighed. The difference between the initial
and the final weights of the dish correspond to the amount of

01l and grease present in the sediment sample. In order to
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obtain some information on the precision of the method, three
subsamples were taken from a homogenized core section and
analyzed for the o0il and grease content under identical
experimental conditions. The precision of the method for
three analyses was found to be 5.7 percent, in terms of

relative standard deviation.
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PART I1I: RESULTS AND DISCUSSION

Water Column Properties

Precision and sampling variability

79. Variation in replicates. Replicate samples

(repeated sampling at depth) were collected as gquickly as pos-
sible at a limited numpber of stations on each cruise. Different

sets of replicates were used to compare the variability in our
analyvtical procedures. The analysis of the replicate samples
for the water constituents listed in Table 4 were used to
compute an estimate of the measurements' variability; the
estimate chosen was the coefficient of variation (CV). The
results obtained from n,. replicate samples (column 1, Table
B4) were used to calculate the coefficient of variation (CVi)
and the standard error of coefficient of variation (chi) for
each set of ng sets (column 2} of replicates. These CVi and
chi were then averaged (CV, column 3 and Scv, column 4).

80. The mean coefficient of variation ranged from a
low of 4.1 percent for dissolved PO43— concentration up to
42.6 percent for urea concentration.

81. Analysis of variance. In addition to determining
a replicate sample variability, based on the CV of the vari-
ables measured, a nested analysis of variance ({(anova) was
calculated for each variable where sufficient replicate data
exist. The objective of this analysis was to determine
whether the observed sample differences were due to sampling
at different depths, stations, or cruises, or whether sample
differences were attributable to variation introduced from
sample collecting methods and lab analyses.

82. Table 5 shows the data for a nested anova testing
variances among stations and depths against the error variance

estimated from replicate samples. The probability, P, that
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TABLE 4

Replicate Sample Variability

Variable (1) (2) (3) (4)
Particulate n_* n_** CVt Scvtt
Constituents 3
Suspended Solids 5 3 10 3
Total - P 5 17 9.8 1.8
Particulate - C 3 32.2 5
Particulate - N 3 23.4 3.7
Chlorophyll a 3 31 5.5 0.7
Disso}ved
Constituents
NHy 5 13 26.1
NO, "~ 5 12 22.8
NO33_ 5 13 6.5 1.2
PO4 5 13 4.1 0.7
Si(OH)4 5 13 9.0
Urea 5 42.6 4.8
TOC 3 23.2 1.8

* nr=:number of replicate samples per set.

** ng =number of sets containing n. samples each.
+ CV mean coefficient of variation (s/x)100, computed

from cvi'557 calculated for each of n sets

n

s
CV = ; (CV)i/nS
i=1
LScvi
i+ Scv = ns where chi is calculated for each CV:.L

of the ns sets.
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TABLE 5

Analysis of Variance (Nested Anova) =-—

Compariscn of variances anonyg subsamples, depths, and stations

VARIABLE SUBSAMPLE AMONG DEPTES AMONG STATIONS

Degrees Degre=s Degrecs

of Mean of Mean cf Mean

Freedom Square Freedor Squars P Freeuom Sguare P
N, " 24 . 0807 3 0607 ns 2 .2410  ns
NO,” 24 . 3599 3 2.418 <.901 2 9.9845 ns
NO2' 24 .00%9 3 L0123 ns 2 .3308 <. 05
po,*” 24 .0036 3 .0024  ns 2 1236 <.05
Total P 24 . 0472 3 .1600 <.05 2 1432 ns
Si(OH)4 24 . 02238 3 9.444 <.001 2 1.857 ns
Chlorophyll a 32 L0091 is L7244 <.001 15 B.7744 <. 001
Suspended Solids 30 .1269 20 4.814 <.0901 9 111.2 <.001
Particulate Carhon lg 3023 - - - 2 126308 <.{001

Particulate Nitrcgen 16 90.7% - - ~ 3 1736 <.00%



all the values are actually from the same population for a
particular variable is indicated in the table. An entry
of ns indicates a nonsignificant difference between the

variance due to depths or stations and the error variance.

4+, all variables tested show

significant variation due to either depths, stations, or

both. The NH4+ data from ACE V (19-20 March) show that the

NH4+ concentrations were uniformly low throughout the study

area and sample variability due to depth or station could

83. Except for NH

not be distinguished. Table 6 shows the data for an
additional nested anova testing differences among stations
and cruises for variables where sufficient replicate data
exist. All variables tested show significant variation due
to stations, cruises, or both.

Variability over a tidal cycle

84. ACE I. During ACE 1, a special experiment was

conducted to determine the tidal variability of several water

2+ NO3
dissolved PO43—, total PO43_, 5i(OH) ,, particulate nitrogen,

particulate carbon, and chlorophyll a) at a single station.

column variables (salinity, temperature, NH4+, NO

Samples were collected eight times (about every 2-1/2 hr}
over 1.5 tidal cycles (20-hr period) at station D during the
10-11 October cruise. The data taken at station D were a
portion of a more complete study involving the sequential
sampling of stations A, B, C, D, E, F, G, H, J, and K. All
the data from the completed study are on file at WES on the
data tape. Only results obtained from station D will be
presented (Figures 8- 20) and discussed here.

85. At station D salinity (Figure 8) varied rela-
tively little over the tidal cycle, especially at depth.
Observed variations, especially at the surface, may be as
much due to the sampling of randomly distributed salinity

patches as to any tidally driven salinity fluctuations.
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Analysis of Variance

TABLE 6

{Nested Anova)--

Comparison of variances among subsamples, stations, and cruises

VARIABLE

3-

Dissolved PO4

Total P

Chlozeophyll &

"SUBSAMPLE _AMONG STATIONS
Degrees Degreas
of Mean o: Mean
Freedom Sguare Frecdon Square P
48 L1952 < 2.049 <.0l
48 L1176 s 3.612 <,001
48 . G055 . 0725 <.01
48 . 0037 .0411 <,001
24 .03%4 : . 1445 <.05
48 3.331 & 6.308 ns
30 . 7046 10 4.621 <.001

AMONG CRUISES

Degrees
of Mean
Frzedem Sguare P
2 34.23 <,001
2 937.4 <. 001
2 L0096 ns
2 5.242 <.001
2 .5520 ns
2 3751 <.001
4 33z2.8 <.001
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86. The water column was virtually isothermal (14-
14.3°C) during this period and thus temperature (Figure 9)
showed very little variation with tide. (Tide data were
obtained from the Tidal Current Tables (National Ocean
Survey, 1974) using the current differences reported for
0.5 mile north of Eatons Neck point.)

87. Dissolved oxygen (Figure 10) also varied little
over the tidal cycle. As expected, highest concentrations
were observed in the surface layer.

88, NH4+, NOZ_’ and N03— concentration values (Figures

11- 13) appeared highest during the ebbing portion of the
tide. This pattern may be due to the influence of eutrophic
waters from western Long Island Sound or from sewage-enriched
harbors of Connecticut or Long Island. The high concentra-
tions observed in Figure 11 was at the 20 m depth where one
would not expect tidal variation.

89, Dissolved PO,

4
both stations were about 3 pM and varied relatively little

concentrations (Figure 14) at

over the sampling period. Total phosphorous concentrations
were highest at slack after ebb (Figure 15).

0. Si(OH)4 concentrations (Figure 16) showed some
variability over the entire tidal cycle; especially at 20 m;
the highest concentrations were obsexrved at slack after ebb.

91. The highest concentrations of particulate nitro-
gen and particulate carbon (Figures 17 and 18) were
observed at slack after ebb in the surface waters.

92. Surface chlorophyll a concentrations (Figure 19)
were greatest on ebb tide. Subsurface concentrations were
nearly constant over the tidal cycle.

93. Concentrations of suspended solids (Figure 20)

were greatest in the bottom waters and at slack after flood.

55



94, ACE II-VI1. Figures 21- 26 show the time

variation in salinity at all stations for cruises ACE II
thru VII (see Table 2). The plots illustrate the combined
effects of tidal, spatial, and seasonal variability in
salinity of similar plots for the other water properties,
except for concentrations of dissolved and particulate
metals for which we have insufficient data to demonstrate
tidal variability, are given in Appendix B',

95. When compared to Figure 8, one can see that
most of the hourly and daily variability appears associated
with where stations are located rather than tidal effects,
For instance, Figure 21 shows the presence of a well-mixed
water column during the 5-6 December c¢ruise (ACE II).

Lowest surface sgsalinities were observed at stations K and L
which were located near Huntington Bay and Norwalk Harbors,
respectively, and thus are probably due to freshwater input
either from sewage or river flow. The discharge of sewage28
from the Huntington sewer district is 6,800 m3/day. During

the 13-14 January cruise period, when freshwater input was

the greatest (Figure 27), low salinity water was distributed
over a much wider area, as evidenced by the depressed
gsalinities observed at stations Z, G, M, and L. Station Z is
located more or less midway between Oyster Bay and Hempstead
Harbor; stations G, M, and L are near the Connecticut shore
and therefore surface salinities at these stations would be
expected to be under the influence of the Norwalk and Saugatuck
Rivers.58’59

96. For the sampling periods in March, April, and May,
surface and 5 m salinity values were found to be consistently
less than those observed at most of the other stations. The
decreased surface, 5 and 9 m salinities observed during ACE
IV at stations D, J, and, approximately 12 hours after station Z
and S5 were sampled, K is probably more due to their nearness

to Huntington Bay than due to tidal effects.
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Horizontal and vertical distribution of water properties

97. The distribution of water properties is presented
for the three cruises, 13-14 January (ACE III), 19-20 March
(ACE V), and 28-29 May (ACE VII), by means of horizontal con-
toured maps plus longitudinal and transverse sections. The
locations of the stations shown on the maps and sections are
given in Figure 2. These three cruise periods occurred
during pre-bloom, bloom, and secondary bloom periods and also
during high and low river flows (Figure 27).

983. The seasonal cycle in averaged results for each
variable for each of the seven sampling periods is presented
in a figure following each set of the horizontal and trans-
verse sections. For each variable, three types of averaged
results are presented: (1) the mean of all surface values;
(2) the mean of all bottom values; and (3) the mean of all
values for all depths.

99. Temperature and salinity. Figures 28, 2%, and

30 show the horizontal and vertical distribution of temper-
ature and salinity for the January, March, and May sampling
periods. Figures 31 and 32 show the seasonal cycles of
temperature and salinity, respectively.

100. From October through March, the water was nearly
isothermal (Figures 28 a,b,d,e, and 315 indicating a fairly
well-mixed water column during this period. The coldest
water temperature was observed in the February cruise (Figure

31). 1In April and May, surface water temperature had
increased to about 8° and 15°C and bottom temperatures in-
creased to 6° and 12°C, respectively (Figure 31). The
presence of the May thermocline (Figure 28 c¢,f), combined
with the halocline (Figure 30 c,f), produced a fairly well-
stratified water column during these months.

101. Generally, surface salinities during the January,

March, and May sampling periods were patchy and lower
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(~26.3°/,,) near the Connecticut shore where the presence of
the Norwalk and Saugatuck Rivers (Figure 27) would be
expected to have a major influence on salinity (Figure 29 a,
c,e}. Bottom salinities were elevated and more uniform, rang-
ing between 27 and 28°/,, (Figure 30 a,b,c).

102. Percent dissolved oxygen saturation. Figure 33

shows the verticle distribution of the percent of dissolved
oxygen saturation (PDOS) during the January, March, and May
sampling periods and Figure 34 shows the seasonal cycle of
PDOS. 1In January, the water was nearly uniformly saturated
with dissolved oxygen. PDOS ranged between 93 and 95%
(Figure 33 a,d).

103. During the March cruise, the water column was
slightly supersaturated with dissolved oxygen; PDOS values of
115% were observed near station D.

104, During May, surface waters were excessively super-
saturated (PDOS >130%), but bottom waters were slightly
undersaturated (PDOS ~80-95%). The excess oxygen was probably
due to oxygen production by photosynthesis exceeding oxidation
processes. The decline of PDOS in bottom waters in May was
most likely affected by the presence of the thermocline
(Figure 28 c,f).

105, Ammonium ., Figures 35 and 36 show the horizontal
and vertical distribution of NH4+ concentration in the study
area for January, March, and May cruise periods. The seasonal
cycle of mean NH4+ concentrations 1s presented in Figure 37.

106, A concentration gradient, increasing towards the
west, is evident in the horizontal maps and vertical sections
for the January cruise (Figures 35 a,b; 36 a). During
this period concentrations decreased to 1 uM, or less, east
of station A (Figure 36 a). Relatively higher surface and

intermediate depth concentrations of about 7 uM were observed
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at the western stations (Figures 35 a,b and 36 a). Ele-
vated NH4+ concentrations were also observed at stations
closest to the north shore of Long lsland near Huntington
Bay (Figures 35 b and 36 d; see also time series plots in
Appendix B').

107, The data from the Marxch cruise show more or less
uniform vertical and horizontal NH4+ concentrations of about
1 pM (Figures 35 c,d and 36 b). The relatively decreased
NH4+ concentrations observed during this period are probably
due to increased phvtoplankton growth which tends to deplete
inorganic nitrogen species,

108. In May, NH4+ was nearly depleted (<1 uM) from the
surface waters (Figure 35 e). At 10 m, the NH4+ concentra-
tions were slightly elevated and patchy (1-3 pM) and exhibited
a concentration gradient increasing towards the western end
of the study area. There was no significant north-south
gradient (Figure 36f) and bottom NH4+ concentrations were
a relatively uniform 4 uM.

109. PFigure 37 shows the seasonal cycle of mean NH4+
concentrations. The NH4+ depletion in March is most likely
due tophytoplankton uptake. The resurgence of NH4+ in April
and May 1s probably due to zooplankton excretion or regener-
ation processes, or a combination of both.

110. Nitrate. Figures 38 and 39 show the distribution
of N03_ concentration for the January, March, and May sampling
periods. During these periods, NO3 ranged between 18 pM and
less than 1 uM. Figure 40 shows the seascnal cycle of mean

NOB— concentrations.

111. The spatial distribution of NO3 concentrations
observed on the January cruise show a small gradient decreas-
ing eastward (Figures 38 a,b; 39 a). Relatively high
concentrations of about 18 uM were observed in the surface

waters near Huntington Bay on the north shore on Long Island

76



oM

13,14 JAN, 1975
ACE 11/

19,20,2] MAR 1975
ACE V

28,29 MAY 1975

ACE Vvif

Figure 38. Horizontal distribution of nitrate concen-
tration (uM) [1 uM NO3 equals 14 npg/l1 NJ.

77



DEPTH, M

STATION

¥ o A v K J 0 H &
o1 L ! oty
i) et
‘168 170 - .
ot 10 165
‘w\\\“\ N /
5l o st N S
20 20 .
' 160 25 1 '
25t e O e T e :
30 : 30 4
13,14 JAN 1975
351 ace n A 38 1 ace 0
40 + + 40 L+ . -
o 2 4 6 8
K J D H G
AR =
i w
1o T 00— —
—— g .
15 L
20 C
25 4 .
30 -
19, 20,2} MAR 975
35 ACE v 35 + ACE V £
a0 t + 40 + \ T + +
) 5 25 20 G 2 4 & 8
¥ R o A v K J4 D H &
o] L 0“!‘“ | L 1 |
] ‘- R A —
5t o T 517
\"\\ — T
1 T 10
i5p . sl
201 20t
25 25 4
307 28,29 may 1975 307
35 ACE VI 35 4 ACE VI
49 40 ~-—+
0 5 o 2
DISTANCE, Km
Figure 39. Vertical sections of nitrate concentration (upM)

[1 M NO

3

equals 14 ug/l1 NJ].

78




6L

FPigure

X!
¥

o]
1

NITRATE, uM
o

O SURFACE

. 0 BOTTOM u
T A ALL VALUES A 1
O
o : % + : : : :
300CT 05 DEC 13 JAN I9FEB  20MAR  23APR 28 MAY
DATE

40, Seasonal variation of mean nitrate concentration.

225

200

175



(Figures 38 a,b; 39 d). Concentrations of NO3- were hearly
uniform with depth at each station but decreased to about
16 uM at the eastern stations (Figure 39 a}.

112, NO3_ concentrations observed on the March cruise
were lower (~7-12 uM) and exhibited a gradient increasing
eastward (Figures 38 c¢,d; 39 b). Relatively higher con-
centrations (~11 uM) were observed in the surface layer at
stations in the central part of the sampling grid and also
at those stations nearest the Connecticut shore (Figures

38 ¢,d; 39 b). Low surface concentrations of 6-7 pM were
observed in surface waters near the north shore of Long
Island (Figure 38 4). Concentrations increased with depth
at most stations (Figure 39 b,e).

113. Very reduced NO

3
observed on the May cruise (Figure 39 c¢,f). At most sta-

concentrations of 0.5-5 uM were

tions concentrations increased from about 0.5-1.0 uM in the
surface layer to 3.5 pM at depth (Figure 39). There was no
apparent east-west gradient in the surface waters (Figure 38
e). However, a concentration gradient increasing eastward
was observed at middepth (Figures 38 f£; 39 c).

114. A mean maximum NO3_ coucentrat%on (Figure 40)
of 17 uM was observed in February. Riley,’ during the 1954-
1955 season, observed maximum NOB- concentrations of 16 uM
in November.

115. Dissolved PO,>"

4
42 show the distribution of dissolved P043 {(diss=-PO

concentrations. Figures 41 and
3~
4

the study area for the January, March, and May sampling

) in

periods. Figures 43 and 44 show the seasonal cycles of
mean diss—PO43— and total phosphorus concentrations, respec-
tively.

116. In January, the vertical concentrations of diss-

PO4 were nearly uniform at 3.2 uM throughout the sampling

80



13,14 JAN 1975

ACE 111

19, 20,21 MAR 1975

ACE V

28,29 MAY 975

ACE Vi/

Figure 41, Horizontal distribution of mean dissolved
phosphate concentrations {(uM) [1 uM PO43"
equals 31 pg/l1l PJ.

8l



DEPTH, M

10 4
15 4
20 1
25 ¢

30
35

40

10

15
20
25
30
35
40

10
I'&
20
25
30
35
40

Figure

-

STATION

=

4

13,14 JAN 1975
ACE [1t

20
25
30
35

ACE 111

(=}

40

1

ACE V

19, 20,21 MAR 1975™

26 30

—_—

42.

30

DISTANCE , Km

Vertical sections of disscolwved
concentration {(uM) [1 uM PO43_
ug/1l PJ.

B2

phosphate
equals 31




£8

Figure

43,

n Ol
i 1 i 1
1 T L] T

I
T

DISSOLVED PHOSPHATE, uM

J

3

O SURFaCE
5 BOTTOM
A ALL VALUES

b i

1

@]

30 OCT

05 DEC

13 JAN

I9FEB  20MAR
DATE

¥
23APR

28 MAY

125

T 100

75

25

P, ugsL

Seasconal variation of mean dissolved phosphate concentration.



¥8

125

I + 100
S
12
i% -+
S 75
T e
1%
g i T+ 50
Q.
O SURFACE

~ !+
E 0O BOTTOM + 25
S N ALL VALUES
k —p

0 } -+ { | { + } C

30 0CT 05 DEC i3 JAN ISFER  ZOMAR 23APR 28 MAY

DATE

Figure 44. Seasonal variation of total phosphorus

concentration.

P, yg/2



area (Figures 41 a,b; 42 a). Concentrations were, however,
slightly greater on the south side of the study area (Figures
41 a,b; 42 d) near the north shore of Long Island.

117. 1In March, dissolved—PO43— concentrations were reduced

to levels ranging between 1.6 and 2.2 pM (Figures 41 c,d;
42 b,e). Concentration gradients increasing towards the
north and also towards the east were evident in the deeper

waters {(Figures 41 c¢,d; 42 e).

118 . During the May cruise, surface dissolvevaO43_ con-
centrations were patchy, ranging between 0.4 and 1.6 uM, At 10
m, the concentrations near the central region of the sampling
area were ~1.6 uM (Figure 41 e,f).

119 . The seasonal cycle (Figure 43) of dissolved—PO43_
was similar to that observed by Riley.7 However, the dissolved-
PO4 ~ concentrations observed during the present study were con-
sistently about 1 uM higher than those reported by Riley.7

The increased P043— in Figure 44 is most likely due to

organic phosphorous bound to particulate matter.

120 . Silicic acid. Figures 45 and 46 show the dis-
tribution of Si(OH)4 concentrations for the January, March,

and May sampling periods. Figure 47 shows the seasonal cycle
of mean Si(OH)4 concentrations,

121 . In January, the Si(OH)4 concentrations were nearly
uniform {(~28 uM) with depth (Figure 46 a,d). Concentration
gradients increasing toward the west and north shore of Long
Island were observed (Figures 45 a,b: 46 a,d).

122 . During the March cruise, Si(OH)4 concentrations
decreased to 10-20 uM, with the higher concentrations found
at depth (Figures 45 d; 46 b,e). Concentration gradients
increasing towards the western and northern regions of the

study area were observed during this period (Figure 45 c,d;
46 e}).
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123. In May, Si(OH)4 concentrations decreased further
to 2-12 uM, with the higher concentrations observed at depth
(Figures 45 f; 46 ¢,f). There were neither east-west nor
north-south concentration gradients observed during this
period (Figure 45 e,f}.

124. The strong seasonal variation in Si(OH}4 is evident
from the results shown in Figure 47. The decreased Si(OH)4
levels observed in the surface waters in April and May are
probably due to phytoplankton uptake.

125. ©Particulate carbon. The particulate organic carbon

(POC) concentrations observed during the January, March, and
May periods are presented in Figures 48 and 49. During these
periods, the concentrations varied from a low of less than

200 ug/1 for January to a high of over 2000 ug/l for May. The
seasonal cycle of mean of POC concentrations is shown in Fig-
ure 50.

126. In January,the distribution of POC was nearly
unfirom at ~200 ug/l (Figure 48 a,b). In March,POC concen-
trations showed a marked increase, with the highest concentra-
tions observed in the western portion of the study area (Fig-
ures 48 c,d; Figure 49 b) near the north shore of Long
Izland. Concentrations decreased with depth at most stations
(Figure 49 b,e).

127. The POC concentrations observed in May were
characterized by a very patchy distribution; concentrations
ranged between 600 and 2000 ug/l (Figure 48 e,f). Generally,
the concentrations decreased with depth (Figure 49 c,f). At
some stations, the POC tended to increase near the bottom.
Disturbed bottom sediments due to the Plunket sampling pro-
cedure may have produced the elevated concentrations shown
at stations R and D in Figure 49 c,

128, The measured mean POC concentrations (Figure 50)
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observed during March, April, and May are due to increased
bioclogical production during these periods.

129. vprarticulate nitrogen. Figures 51 and 52 show

the distribution of particulate organic nitrogen (PON) for
the January, March, and May cruise pericds. The distribution
of PON essentially mimics the POC distribution just described.
The seasonal cycle of mean PON concentrations is shown in
Figure 53.

130. The lowest PON concentrations (~39ug/1) were
observed in January in which the spatial distribution was
very nearly uniform (Figures 51 a,b; 52 a,d). PON
concentrations were slightly elevated at the western end of
the sampling area (Figure 52 a).

131. By March;PON had increased to about 100 pg/1 and
the spatial distribution was characterized by a strong con-
centration gradient increasing toward the west and, for many
stations, decreasing with depth (Figures 51 c,d; 52 b).

132. The highest PON concentrations (~80-240 pg/1)
were observed in May. However, during this period PON's were
very patchy throughout the sampling area (Figure 51 e,f).

133. Chlorophyll a. The horizontal and vertical distri-

butions of chlorophyll a concentrations for the January,

March, and May sampling periods are presented in Figures 54
and 55. The seasonal cycle of mean chlorophyll a concentra-
tions is given in Figure 56.

134. During the January period, chlorophyll a concen-
trations cobserved at all stations and depths were uniformly
low, ~ 2 mg/m3 (Figures 54 a,b; 55 a,d)}.

135. 1In March, chlorophyll a concentrations increased to
10-24 mg/m3 in which the highest concentrations were observed
at stations nearest the north shore of Long Island at the
western end of the sampling area (Figure 54 c,d). Concentra-

tions decreased with depth at all stations during the March
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sampling pericd (Figure 55 b,e}.

136. During the May sampling period, surface and 10-m
chlorophyll a concentration levels occasionally exceeded 20
mg/m 3 (Figure 54 e,f) and the distributions were patchy.

The higher chlorophyll a concentrations seem to be associ-
ated with shoreward stations on both sides of the sound
(Figure 54 e,f). A concentration gradient, decreasing toward
the east, was observed (Figure 54, e,f} and concentrations

decreased with depth at most stations (Figure 54 c¢,f).

137 . Sugpended golids. Figures 57 and 58 show the
distribution of suspended solids concentrations for the
January, March, and May sampling periods. The seasonal cycle
of mean suspended solids concentrations is presented in
Figure 59.

138. During the January cruise, suspended solids concen-
trations were relatively uniform with surface wvalues in the
~2-4 mg/l range and bottom values about 5 mg/l (Figures

57 a; 58 a). A concentration gradient increasing towards
the west was observed in the surface and 10-m waters (Figure
57 a,b).

139. During the March cruise, the distribution of
suspended solids concentrations was similar to that observed
in the January cruise. Slightly elevated surface concentra-
tions were observed on the north side of the sampling area
near the Connecticut shore (¥igure 57 c¢).

140. 1In May, surface suspended solids concentrations were
again similar to those in January and March. However, bottom
concentrations were considerably elevated, especially at the
western end of the sampling area (Figure 58 cj.

141 . The increased concentrations of suspended solids
observed in the December cruise (Figure 59 was due to sedi-

ment resuspension by a storm that passed through the area.5
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Figure 60 shows the typical size distribution of the sus-
pended solids collected at selected stations in the sampling
area.,

142. Dissolved metals. The concentrations (ug/l) of
dissolved Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in
approximately 165 samples and dissolved Hg in 28 samples.

143, Mean concentrations ranged from 0.6 ug/l for Cd
to a high of 8.5 pg/1 for Pe. Table 7 summarizes the low,
high, and mean concentrations for each metal and Figure 61
shows vertical sections showing the longitudinal (east-west)
distribution of dissolved metals during the January sampling
period.

144. In general, the distribution of dissolved metal
concentrations showed very little temporal or spatial vari-
ation greater than the analytical error which is given in
Appendix A'. Pb and Cd were the only metals whose concentra-
tions at the western end of the study area were slightly
elevated above those observed at the eastern end of the
transect (Figure 61). TFigure 62 shows the seasonal cycle
of mean concentrations.

145. The Cd, Cu, and Pb concentrations were about twice
those reported by Dehlinger et al.60 for the eastern sound
during August 1972 and February 1973. The increased Pb and
Cd concentrations may be due to anthropogenic inputs to the East
River and the downward flux of contaminated aerocsols.

Mytelka et al.26 and Chen et al.61 have shown that discharged
effluent from sewage treatment plants located on the East

River is a major source for dissolved heavy metals, such as

Pb and Cd. Klein et al.27
Pb and Cd to be 530 and 3 ug/l,respectively, for the lower

reported concentrations of dissolved

East River.
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Table 7
Dissolved Metal Concentrations (ug/1)

Ccd Cu e Hg Mn Pb Zn
Number of
samples 165 166 165 28 165 165 166
analyzed
Low 0.02 1.5 0.1 0.01 0.1 0.02 1.0
High 3.2 5.6 33.6 2.0 7.8 9.3 54.1
Mean 0.6 2.5 8.5 0.7 2.1 0.8 5.4
Standard
Deviation 0.32 0.4 3.1 0.43 0.9 0.56 2.8
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146- Suspended metals. The concentrations (ug/l) of

Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn were determined in 164
to 192 samples. Mean concentrations ranged from a low of
0.010 pg/31 to a high of 1330 ug/1 for Fe. Table 8
summarizes the low, high, and mean concentrations of suspended
metals in all the samples analyzed and Figure 63 shows
vertical sections depicting the longitudinal distribution of
particulate metal concentrations for the January cruise. The
figure shows no significant vertical or horizontal concentra-
tion gradients. Figure 64 shows the seasonal cycle of
suspended metal concentrations. The higher concentration of
particulate iron and manganese relative to the other metals

is probably due to the presence of oxide phases.62

Sediment Geochemistry

Water content

147. The water contents varied from 10.9 to 76.3 percent
by mass in the surface and subsurface samples, The most
obvious physical change with depth in the sediments was a
systematic decrease in water content as a result of sediment
compaction.

Texture

148. The sediments were mainly light-gray to black
clayey silts. The core sections that were black in color were
invariably accompanied by an odor of hydrogen sulfide, thus
reflecting prevailing reducing conditions., Many sediment
cores were covered by a thin layer of black organic-rich muddy
material., In some of the sediment cores, sand was the domi-
nant size fraction. Ternary plots depicting the relative
proportions of gravel, sand, silt, and clay fractions present
in each core section are shown in Figures 65— 70. The sta-
tion designation, core section interval (cm), cruise number,

and sediment type for each core are also given.
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TTT

Number of
samples
analyzed
Low

High
Mean

Standard
Deviation

Table 8

Particulate Metal Concentrations (ug/l)
In Water Colum Samples

Ag Cd Cr Cu Fe Hg Mn Pb Zn
180 le4 152 192 1382 192 192 150 178

0.0024 0.0024 0.076 0.088 8.0 0.0032 4.8 0.186 0,016

0.085 0.061 4.7 9.2 1330 0.074 240 4.2 120

0.020 0.010 0.71 0.88 115 0.019 17.8 0.66 3.9

0.0098 0.0087 0.54 0.66 74 0.010 11.6 0.34 7.1
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Figure 65. Texture of sediments at stations A and B.
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Figure 69. Texture of sediments at stations EB-8,
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149. The relative distribution of gravel, sand, silt,
and clay fractions in near~surface sediments in the area of
study are shown in Figures 71— 74. Values given at each
station correspond to the top sections of cores collected
during the first, second and third cruises. Hyphen (-)
indicates no core obtained at that particular station for
that cruise. The inset is a blow-up of coring stations around
DSA3 that were sampled during the third cruise.

150, The sediments at the control station are sandy
and become increasingly fine~grained to the east - clayey silt
at gstations EB12 and 0. To the west of the control site, the
bottom mud grades to sandier sediments with significant gravel
content at stations B', C, EB8 and EB4. The highest gravel
content is encountered at station EB8 (Figure 70) presumably
due to the presence of a cable and anchor reef as reported by

McCrone.63

To the west of stations D and EB4, the sediments
become increasingly fine-grained with high concentrations of
silt at and around station DSA (see inset, Figure 72} and
stations EB5, EBl, EB3 and F. To the north and south of the
general disposal area, the sediments are generally sandy.
This can be attributed to shallower depth at the margins of
the study area as shown in the bathymetric map in Figure 1.
Bottom currents may also be responsible for maintaining this
pattern size distribution.

151. The discrepancy in grain size data for some of
the stations sampled during all three cruises (for example,
stations A and D) probably reflects navigational error and
general patchiness associated with irregular topography in
the area of study.
pH-Eh

152, The pH readings indicated slightly alkaline to

acidic conditions in the core sections that were examined.
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Although Eh measurements were not made, the presence of
hydrogen sulfide odor in most core sections indicated re-~
ducing conditions.

Mineralogy

153, The top l0-cm sections of 10 selected cores were
analyzed for bulk mineralogy by x-ray diffraction. Soluble
salts were removed by washing the finely ground powder with
distilled water, Random mounts of the samples were scanned
from 1° to 60°26 at 2°/min. The diffractograms showed that
the bulk samples were composed principally of quartz and
feldspars with only minor amounts of amphiboles and clay
minerals. Since the bulk mineralogy data were based on Xx-ray
diffraction analysis, trace amounts of other minerals present
could not be detected. Microscopic analyses of bottom sedi-
ments from western Long Island Sound reported by McCrone63
revealed the presence of other minerals, such as aragonite,
calcite, muscovite, biotite, augite, kyanite, dolomite, garnet,
magnetite, hematite, and zircon.

154, The clay fraction was composed mainly of chlorite,
illite, kaolinite, and mixed-layer montmorillonite, with traces
of quartz, orthoclase, and plagioclase. The chlorite present
was of the Fe~rich type as indicated by strong second- and
fourth-order basal reflections. Glycolation and heating tests
indicate that the mixed layer component was of the illite-
chlorite type.

155. Kaolinite was present in appreciable amounts in
all sediment samples. It is known to be present in Connecticut
soils and must be transported into the sound by the Housatonic
and Connecticut Rivers. McCrone63 reported the absence of
kaolinite basal reflections on the diffractograms of clay

3

samples heated at 550°. According to Carroll,5 kaolinite is

converted to amorphous metakaolin when heated to 550-600°C.
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However, disordered kaolinite becomes amorphous at lower
temperatures. In this study, the (002) kaolinite reflection
at 3.58 8 could always be distinguished from the (004)
chlorite reflection at 3.54 % on a slow scan diffractogram.
No heat treatment of the samples was required. Quantitative
estimates of clay mineralogical compeosition did not reveal
any significant trends from one station to another. The
relative distribution of montmorillonite, illite, kaolinite,
and chlorite in the surface sediments of the study area are
shown in Figures 75~ 78. The following range of variation
was encountered: montmorillonite plus mixed layer clay,
3-15 percent; chlorite,13-28 percent; kaolinite, 13-30 percent;
and illite, 38-61 percent. The values for montmorillonite
plus mixed layer component are not too reliable due to the
uncertainty in the measurement at low 28 angles,

156. At stations A, D, and F, the subsurface samples
were also analyzed. X-ray diffraction patterns indicated
that the clay mineralogy of the cores is essentially uniform
from top to bottom, thus implying that no structural trans-
formation occurs during early diagenesis. The clay mineral
data for surface and subsurface samples at stations A, D,
and F are presented on ternary plots shown in Figures 79-

81. It should be mentioned that kaolinite and chlorite
together represent one end component. At station A, a slight
variation in clay mineralogy with depth is observed. The
top section of the core exhibits about 20 percent enrichment
in illite at the expense of 7 2 components relative to sub-
surface samples.

Particulate nitrogen and carbon

157. The nitrogenous part of organic matter deposited
in the bottom sediments varied from 0.0l to 0.46 percent by

dry weight for surface and subsurface samples. At many
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Figure 79. Ternary plot depicting the clay mineralogical
composition in sediment core at station A.
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Figure 8l1. Ternary plot depicting the clay mineralogical
composition in sediment core at station F.
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stations there was a general decrease in nitrogenous matter
with depth. The concentration-depth profiles for cores
collected during the April coring cruise are shown in Figures
82— 90. 1In addition, C/N ratio-depth profiles are also in-
cluded in the figqgures. The C/N values range from 5 to 12,

64,65 for sediments

This low range 1s similar to that reported
in the sludge dump site in the New York Bight. The decrease
in nitrogen content as a function of increasing depth implies
that much of it is decomposed, reforming nutrients, Compari-
son of particulate nitrogen profiles with those of total
dissolved nitrogen also indicates nutrient regeneration at
depth. According to Kaplin,66 however, the total nitrogen

in the sediments from the study area ranges from 0.01 to 0.17
percent, the maxima occurring between 0.3 and 0.6 m below the
sediment/water interface with no apparent direct relation to
total organic or mineral content, grain size, pH, or Eh. It
should be noted that Kaplin66 toock grab samples for the
analyses.

158. Particulate carbon in the sediment surface and
sub-surface samples varied from 0.32 to 4.60 percent by dry
mass. No calcite or aragonite peaks were observed on the
diffraction patterns of bulk samples, thus indicating that
CaCO3 was either absent or the concentrations were too low to
be detected by x-ray diffraction. 1In general, the surface
samples showed marked enrichment relative to the subsurface
samples. The concentration-depth profiles are shown in
Figures 82-90. At most stations, the carbon content de-
creases with increasing depth. Methane and carbon dioxide
are known to form during early diagenesis of sediments.
Reeburgh67 has shown that in the pore waters of sediments
from Chesapeake Bay, methane is produced so rapidly that it

reaches supersaturation and escapes across the sediment-water
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interface in the form of bubbles. The relatively high organic
carbon content in the sediments may indicate man's impact on
the environment as marked increases in organic carbon content
have been registered in the top core sections.

0il and grease

159. Hydrocarbon extracts from sediments were found to
range from 0.01 to 0.44 percent by dry weight in surface and
subsamples. The concentration-depth profiles, shown in Figure

82~ 90, indicate enrichment in the upper layers relative to
the deeper sections of the core. This can be attributed to
higher inputs of aromatic and nonaromatic compounds to Long
Island Sound in recent years. No significant relation was
detected between hydrocarbon and mineralogy of the cores.
Some of the large variations observed in the surficial samples
may be due to differences in particle-size distribution.
Danker68 reported slightly lower values ranging from 0.006 to
0.25 percent in sediments from western Long Island Sound.
McCrone63 also found that organic content in the sediment
cores from the study area is greatest in the topmost sediment
layers and decreases downward within the top foot of most
cores before becoming more or less uniformly distributed
through the deeper portion of the cores.

Cation exchange capacity

160. The CEC of surface and subsurface samples varies
from 0.1 to 99.6 meq/l00 g of dried sediment. Plots of CEC
versus depth in the sediment cores are given in Figures 82—~ 90,
For several sediment cores, the figures reveal a general trend
of decreasing CEC with increasing depth. This pattern can
not be attributed to grain-size distribution and fine-fraction
mineralogy because the changes in these parameters with depth
are not significant (Figures 65~ 70, 79). At several

stations, the exchangeable Ca decreases with increasing depth.
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It seems that the decrease in total CEC with depth is related
to the exchangeable Ca pattern in sediment cores, It is
probable that Ca fixation occurs in the expandable component
of the clay fraction with increasing depth of sediment burial.
Some sediment samples having extremely low CEC consist of a
much coarser gravelly type of sediment., Organic matter may
also account for the observed variations in the CEC wvalues.
CEC values range in the order of 30 to 40 meg/100 g for sur-
face sediments in the Hudson River Estuary (McCroneGg}.
McCrone69 found that clay-size organic matter, rather than
clay minerals, account for the largest fraction of this
capacity.64

Total and dissolved metals

161+ Sediment. The acid-leaching technique used in
this study for the determination of total metal concentration
is similar to that used by Thomas et al. (in Turekian37).
These authors have shown that 1 N HNO3-leached samples
release 85-90 percent of the total concentration of the
metals present in totally dissolved samples.

162, The metal concentrations in sediments showed
large variations from one station to another. The range of
metal concentrations found in surface and subsurface samples
were Cu, 6~230mg/); Pb, 4-145mg/l; 4n, 19-278 mg/l; C4,
300-3100 pg/1; Hg, 5-1420 pg/l; Ni, 6-33mg/l; Mn, 124-1628mg/1;
and Fe, 7000~38000 mg/1. In most cases, the highest concen-
trations of Cu, Pb, Zn, Cd, and Hg were typically found near
the surface. Fe, Mn, and Ni exhibited a somewhat erratic
distribution pattern. The total metal and interstitial metal
concentration-depth profiles for the sediment cores collected
during the three coring cruises are given in Figures 91~ 125,
The cruise date is given on each figure. The vertical bar

represents the metal concentration and its size is the length
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of the core section. The absolute concentrations of the dis-
solved metals in sediment pore waters reported here (shown in
Figures 91~ 125) are generally greater than those found in
the overlying water column. This is in general agreement
with the observations made by several other workers (Presley
et al.;70 Brooks et al.;7l Duchart et al.72). The dissolved
metal concentrations exhibit a rather wide range of variation:
Zn, 2-269 yg/l1; Pb, 0.9-32.2 ug/1; €4, 0.03-2.68 pg/1; Cu,
1.6-92,2 yg/1; Ni, 0.3-15.3 yg/1; Mn, 80-11250 yg/1; and Fe,
11-968 yg/1. For some of the samples, the pore water metal
concentrations were below the limits of detection. Inter-
stitial Hg in sediments was not determined because the
analytical method was not developed to detect low concentra-
tion levels. At a few stations, some metals show no variations
with depth. Most of the metals exhibit irregular vertical
variations. Too few data points are available to interpret
the dissolved metal concentration profiles.

163 . In many cores, a pattern of decreasing total metal
concentration with increasing depth of sediment burial is
observed for Pb, Zn, Cu, and Hg. Since the mineralogy and
grain-size distribution do not show any significant trend
with depth in the cores, these parameters can not account for
the observed metal concentration profiles., Turekian37 observed
a similar distribution in a core from the central Long Island
Sound for Cu, Zn, Pb, and Hg and reported that, for reducing
sediments, the concentration of sulphide ions in sediment
pore waters determines the mobility of metals. Table 3,
adapted from Skinner and Turekian,—]3 gives the solubility
product constants of metal sulphides for a sulphide ion
activity of 10—9 moles/litre at 25°C. Therefore, the metals
whose solubility product constants are exceeded will form
authigenic sulphide phases and be trapped in the sediment
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Table 9

Expected Equilibrium Concentrations for Some

Metals in Pore Waters of Sediments Having a Sulphide
Ion Activity of lO’g‘Moles/Litre‘at 25°C (Adapted
73
)

From Skinner and Turekian

Log concentration

Metal (moles/litre)
Nickel - 10.7
Iron - 6.4
Manganese - 2.6
Copper - 26.0
Zinc - 14.1
Cadmium ~ l6.2
Mercury - 43.7
Lead - 16.6
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column. On the other hand, metals that do not precipitate as
metal sulphides at concentrations encountered in pore waters
of reducing sediments are mobile within the sediment.

164 . Using the Pb-=210 method to determine an average
rate of sedimentation of 0.45 cm/yr in central Long Island

37 estimated the time when the rate of metal

Sound, Turekian
fluxes to Long Island Sound changed drastically as a result

of man's activity. Assuming the top of the core to be zero
age, they found that the major change in the metal supply to
Long Island Sound took place about 100 yr ago with a sharp
increase about 70 yr ago.

165. In this study, the observed interstitial metal
data showed that the concentration levels of Cu, Zn, Cd, Pb,
and Ni are much higher than those expected from control by
precipitation of their respective metal sulphides. This
presumably means that these metals are present as organic
complexes or are controlled by other precipitation-dissolution
reactions., It is probable that these metals are associated
with the humic-acid fraction of organic matter or oil and
grease component of the sediment because the upper sediment
layers have relatively higher carbon content than deeper
sections of the core, Lindberg and Harris’4 found that the
sediments from the Florida Everglades and Mobile Bay estuary
exhibit strong associations between sediment Hg and sediment
organic matter and between dissolved interstitial Hg and dis-
solved organic carbon.

166, Mn and Fe, on the other hand, may be present as
sulphides because the observed interstitial concentrations of
these metals are below the equilibrium solubility of their
respective sulphide phases. The black cclor of many HZS -
smelling samples is also indicative of the presence of Fe

sulphide phases. Berner’® has reported that in recent
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sulphide-rich sediments black iron sulfides are common. The
principal mineralogical phases present are mackinawite

(tetragonal Fe S) and greigite (cubic Fe3S4). An inspec-

tion of the seéiﬁent metal data indicates that the total Fe
is much more abundant than total Mn in the sediments. How-
ever, the concentration of dissolved Fe is much less than
that of dissolved Mn. The lower concentration of dissolved
Fe can be attributed to the much greater ease for formation
and stability of Fe sulphide compared with Mn sulphide. The
correlation between the dissolved metal concentration and
total metal concentration for other metals is not so clear
cut.

l67. While other metals show marked enrichment in the
more recently deposited sediments, Fe, Mn, and Ni exhibit a
somewhat erratic distribution pattern and no elevated concen-
trations in the top layers were observed. It seems that the
other metals Pb, Cu, Zn, Hg, and Cd are being introduced
anthropogenically at rates greater than the natural
ones; whereas Fe, Mn, and Ni have natural deposition rates
much greater than the rate of man-induced fluxes of these
metals. The total metal content of the sediments is-not
associated with the clay fraction, thus implying that the
metals are not bound to surfaces and edges of the fine-grained
component of sediment. Ni, however, exhibits a covariant
relationship with the clay content. The association of Ni
with clay minerals is well known. Chester and Messiha-Hanna76
found that most of the Ni in nearshore North Atlantic sedi-
ments is lithogenous. According to Chester and Hughes?7'78
the lithogenous fraction of Ni is present within the lattice
of clay minerals. Bruland et al.’? reported that Ni, present
in inner basin sediments off the coast of southern California,

appears to be introduced solely from detrital mineral particles.
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168 . The importance of sediments in the control of
nutrients has been recognized for the following reasons:

(1) nutrients are incorporated into the sediments in partic-
ulate form and subsequently escape to the overlying water in
dissolved forms; (2) the top few metres of the sediment column
is the site of major transformation between solid and dis-
solved phases and speciation of dissolved forms (Bernergo);
and (3) the sediments can act as a reservoir and source of
dissolved nutrients (Sholkovitz,81 Rittenberg et al.82).

169. Previous nutrient studies in Long Island Sound
have mainly been concerned with transport and recycling pro-
cesses occurring within the water column (Riley,7 HarriSZl).
Little attention has been given to processes in the sediment
column and at the sediment-water interface and how they may
affect the nutrient composition of the overlying water column.
Biogeochemical and physical processes taking place in the top
few metres of the sediment column and at the sediment-water
interface may play an important part in maintaining the
nutrient composition of the overlying water column in Long
Island Sound because (1) certain parts of the sound are known
to contain reducing sediments enriched in organic carbon and
nitrogen (Martens and Berner38); (2) the sound is relatively
shallow; and (3) bioturbation is reported to be an active

8
3)‘

process in certain parts of the sound (Goldhaber et al.

170. The concentration-depth profiles of dissolved

+ - . . :
NH4 ’ PO43 ’ Sl(OH)4, and total dissclved nitrogen present

in sediment cores collected during the April cruise are given

in Figures 82- 90. The interstitial NH * concentrations in

4
sediment cores vary from 280 to 2100 uM. Relative to the
overlying bottom waters, the sediments are enriched by two
to three orders of magnitude in terms of dissolved NH4+.

The sharp concentration gradient at the sediment-water
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interface implies that the bottom sediments may be a poten-
tial source of nutrients. However, the interface was not
studied in detail and further interpretation is not justified.
The interstitial NH4+ concentration profiles often show a
strong maximum at about 15 to 20 cm for the top of the core.
The maximum in the NH4+ distribution may be attributed to
increased input of organic detritus since the last 70-~100 yr,
assuming a sedimentation rate of 0.5 cm/year. The removal
of NH4+ in the upper 10 cm may be due to diffusion, bioturba-
tion, or a combination of both.

171 . 1Interstitial silica concentrations also show a
considerable enrichment compared to the overlying waters.
The interstitial Si(OH)4 concentrations vary from 600 to
1470 pyM. In most of the cores, the Si(OH)4 values show
saturation at depth. Since these values are higher than the
equilibrium solubility of quartz and common clay minerals, the
interstitial silica concentration must be regulated by the sol-
ubility of biogenic opal contained in the sediments as reported
by Siever and W‘oodford,84 Fanning and Schink,85 and Hurd.86 The
shape of the interstitial concentration profiles indicate that
Si(OH), is lost by diffusive processes to the overlying waters.

172 . The concentration-depth profiles of interstitial

PO4 in sediment cores are given in Figures 82- %90. The
PO4 " concentrations range from 5 to 1287 pM. Some of the
PO4 ~ concentrations are similar to those observed for NH4+

and total dissolved nitrogen. This suggests that the processes
operative for PO43_ regeneration at depth and loss to the
overlying waters may be similar to those for NH4+. Since the
Long Island Sound sediments are depleted in calcium carbonate,
authigenic formation of apatite would not be expected and
extensive supersaturation relative to apatite can be main-
tained. Berner87 reported concentrations of interstitial
phosphate exceeding 10 uM in the polluted surface sediment

from New Haven Harbor, Long Island Sound.
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PART IV: SUMMARY OF RESULTS

Seasonal and Depth_Distribution of the Important Water

Colunin Data

173 . The averaged water column data collected on all

- 3=
3 1 PO4
Si(OH)4, chlorophyll a, particulate carbon, and particulate

3 . » +
cruises for temperature, salinity, Opr NH, , NO

nitrogen are summarized in Figure 126. Data were averaged
for all stations sampled on each cruise for a given depth
interval. The averaged data were plotted with depth for each
cruise and were contoured. The figures show the temporal
changes in these variables for the sampled depths. A similar
plot of mean water column stability is also presented.

174. Figure 126a illustrates seasonal water column
cooling that progressed through March. On the average, the
water column was uniform, with respect to temperature, on
each cruise until 23 April, when the spring warming was evi-
dent in the surface layer of about 10 m depth. By 28 May,
the water column showed considerable thermal stratification,
ranging from less than 11°C below 16 m depth to above 15°C
near the surface,

175 . Figure 1l26billustrates the temporal changes in
the depth distribution of 8°/,, and Oy -

x 1000.] Salinity averages were relatively uniformly distrib-

[ot = (density-1)

uted with depth on each cruise, Variations of 0.5°/,, Or
less were encountered until May when a stronger halocline
was observed. A weak pycnocline was observed, beginning in
January, probably due to the small depth variation in mean
salinity, the water column temperature average being nearly
uniform. By May, both the slightly increased halocline and
much intensified thermocline combined to produce a higher

degree of density stratification.
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176 . Figure 126c shows the seasonal distribution of
water column stability, calculated as the station average of

[o

surface =~ o bottom] x 1000
Stability =

t

water column depth

for each cruise.

177 . Figure 126d through g illustrate the seasonal
depth distribution for NH4+, NOB_, PO43“, and Si(OH)4, respec-
tively. Relatively high, but uniform, water column mean
nutrient concentrations were observed on each cruise until
April and May, when concentrations in the surface layer were
observed to have decreased. By 20 May, both the average
water column N03— and NH4+ concentrations had fallen to below
0.5 uM in the surface layer at ~4 m depth. Si(OH)4 de-
clined to values below 5 pM in the surface layer during this
period.

178, The observed decline in mean nutrient concentra-
tions was accompanied by observations of increased water
column stability and increasing mean water column concentra-
tions of chlorophyll a (Figure 126h}). Two blooms of algae
were observed, one on 20 March and one on 28 May.

179, Particulate carbon and particulate nitrogen
(Figure 126i and j) mean concentrations increased from low
values during the winter period to much higher concentrations
during the period corresponding to that of increased water
column stability, declining nutrient concentrations, and
increasing chlorophyll a levels.

180 . Taken together, the averaged water column data
represent the late fall to spring portion of the annual
cycle of water column stability and nutrient and phytoplankton

concentrations observed previously by RileyS'6 and others for
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temperate latitudes. The expected increase in phytoplankton
stock was in response to the seasonal increase in intensity
and duration of solar illumination. The decline in the ob-
served average nutrient concentration was likely due in large
measure to phytoplankton utilization.

181 . One of the most significant results in the distrib-
ution of dissolved metals was the increased concentrations
observed at the western end of the sampling area. These
findings are summarized in Figure 127, which shows the
seasonal variation in water column averages for stations Y
and V (Figure 2}, the westward and eastward stations, respec-
tively. For the 13 January cruise, the average dissolved Pb
concentration at station Y was about three times greater than
the value for station V. Concentrations of dissclved Cu, Mn,
and Zn were also greater at station Y during this period. A
similar pattern was observed during the 19 February cruise,
but with concentrations of Cd and Fe now greater at the
western end. During the 20 March cruise, the period of intense
phytoplankton blooming, the differences between the concentra-
tions at stations Y and V were essentially zero,.

182 . The increased concentrations of dissolved metals
at the western end of the sampling area during the January
and February periods are probably due to heavy metal input26’27
from the East River-Western Long Island Sound system. The
decreased concentrations at station Y during the bloom period
suggest that biological processes at the western end may be
important in the removal of metals from the water column.
That organisms may be incorporating dissolved metals in
their biomass is shown in a comparison of the seasonal vari-
ation of suspended metals (Figure 128) with chlorophyll a
and particulate carbon and nitrogen (Figure 129). The 20
March and 28 April cruises oecurred during periods of peak

chlorophyll a concentration; likewise maximum concentrations
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of suspended Ag, Cu, Cr, and Fe were also observed during
these periods. Concentrations of suspended Pb and Mn, how-
ever, showed a more or less steady increase from 13 January
to 28 May and corresponded to the approximately steady
seasonal increase in concentrations of particulate carbon
and nitrogen,

Evaluation of Proposed Disposal Site Relative to the Control

Site in Termg of Sediment Properties
Sediment texture and mineralogy

183 . Figures 71~ 74 show the sediment distribution in
the area of study. The sediments in the disposal area are
mainly silty, with minor concentration of clay followed by
sand. At the control site, the sediments are sandy mud, with
the silt fraction being the dominant component. To the east
of the control site, the textural distribution grades to
clayey silt or fine mud with practically no sand fraction
present. Relative to the disposal area, the sediments in the
region of the control site are more fine-grained with relative-
ly higher concentrations of clay fraction.

184. X-ray mineralogy of the clay fraction shows the
presence of illite, chlorite, kaolinite, and montmorillonite
with minor amounts of feldspars and quartz in the sediments
within the area of study. Figures 75- 78 show the distribu-
tion of illite, chlorite, kaolinite, and montmorillonite in
the clay fraction of near-surface sediment samples. At the
disposal site, the fine-fraction mineralogy is dominated by
illite - 43-59 percent, followed by kaolinite -~ 14-28 percent,
chlorite - 14~18 percent, and montmorillonite - 3-15 percent.
At the control site, the relative percentage of clay minerals
does not differ significantly from that at the disposal site.
Chemistry

185, Most of the cores obtained from the disposal area

had a hydrogen sulphide odor. The total carbon and nitrogen
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content of the near-surface sediments are similar in both
areas.

186 . Figures 130-137 show the concentration distri-
bution of total Zn, Pb, Hg, Cu, Mn, Ni, Cr, and Fe present
in near-surface sediments within the area of study. The
distributions of metals in surface sediments: however, do not
reyeal any significant difference in the concentration
pattern in the areas of interest.

Summarized Interpretation of Sediment Geochemistry Data

Based on Correlation Coefficient Matrix

187 - The correlation coefficient matrix for sediment
data is given in Table 13. The plus (+) and minus (-) signs
correspond to statistically significant positive and negative
correlation, respectively. The positive and negative numer-
ical r values are given where the relationship is highly
significant. The n (number of points) values are also given
below these r values.

188 . Zn, Pb, Cu, Cd, and Hg show a negative relation-
ship with sample depth in most sediment cores. In particular
Zn, Pb, and Cu exhibit a strong negative correlation (r=0.5,
n=112) with incCreasing sediment depth., Fe, Mn, and Ni do not
reveal any significant trend with depth in core, thus indi-
cating that no elevated concentrations above baseline levels
are encountered for these metals., Table 13 indicates that
all metals are strongly associated statistically with the
organic fraction of sediment, with r values ranging from 0.5
to 0.8 for n greater than 100. All metals, with the exception
of Cd and Hg, show positive correlation with the total iron
content of sediment.

189 . Of particular interest is the strong association
of metals with each other. A positive relationship exists

between the metals, excluding Cd, and total CEC of sediment.
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It should be mentioned, here, that a major fraction of the
exchange capacity is attributable to exchangeable Ca2+. The
metals also show association with the o0il and grease content
of sediment.

190 . The correlation coefficient matrix shown in Table

13 also indicates that most of the organic matter, including
oil and grease, is concentrated in the mud fraction, especial-
ly silt, as evident from high r values for n greater than 100.
The association of organic matter with mud fraction also
explains the positive relationship between metal content and
mud fraction.

191, Interstitial metal concentrations exhibit some
correlation mutually and with other sediment parameters, but
no systematic trends were detected. None of the dissolved
metals seem to be associated with the dissolved organic carbon
content. The interstitial nutrient concentrations exhibit
some trends with depth in core. This has been discussed
earlier in the text. Total dissolved nitrogen concentration
profiles are similar to those of dissolved NH4+, thus indicat-
ing that the major component of dissolved nitrogen in sediment
pore waters is dissolved NH4+. Since the PO43— and NH'_4+ con-
centrations are strongly dependent on Eh conditions, a close

similarity is observed between the interstitial NH4+ and

PO4 concentration profiles. The control of dissolved
3 (PO4),
likely in this case because the phosphate profiles do not

PO, by precipitation of vivianite [Fe -8H20] is un~

show any relationship with dissolved iron distribution.
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APPENDIX A': SAMPLING AND ANALYTTICAL PROCEDURES
USED FOR THE DETERMINATION OF TRACE HEAVY METALS

Dissolved and particulate metals in the water column
A. Decontamination of the apparatus used for sampling
dissolved and particulate metals in the water

column,

1. Water sampler: General Oceanics' Niskin

"top-drop" bottles of 10-1 capacity. These
bottles are constructed from polyvinylchloride.
Prior to each cruise they were cleaned by
leaching with 1 N HC1 for 48 hr followed by

a rinsing with Super-Q.

2. At-sea sample container: Narrow=-mouth NalgeneR

polypropylene bottles of 500-ml capacity. New
bottles were cleaned by rinsing with concen-
trated HC1l followed by Super-Q and then cali-
brated to contain 500 ml. One week prior to
sampling, the bottles were filled with 1 per-
cent (V/V) concentrated HNO3. Before use at
sea, the bottles were emptied and rinsed with
Super-Q. Just prior to filling at sea, each
bottle was rinsed with about 100 ml of the
filtered seawater sample.

3. At-sea filter holders: MilliporeR Swinnex

filter holders (polypropylene) of 25-mm
diameter. These holders were cleaned by
soaking in HCl and rinsing with Super-Q.

4, Filters: Type A gelman glass fiber filters

(25-mm diameter). According to the manu-
facturer's description (Arthus H. Thomas

Catalog, 1974, p. 628), the pore size is such
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that the filter will "retain 99.7% or more of
particles larger than 0.3 micron and over 98%
of particles as small as 0.05 micron.“ How-
ever, according to Cranston and Buckley,88
{p. 12) the experimental pore diameter is 2
microns; where "...the experimental pore
diameter,..is defined as that size of sphere
[latex bead] that is 90% effectively removed
from 1 liter of a 1 mg 1~1 suspension [of
latex beads]."

Filter storage containers: 47-mm plastic petri

dishes (MilliporeR). These dishes were cleaned
by scaking in 1 N HC1l followed by a rinsing
with Super-Q.

At-sea sample bottle for dissolved Hg: 125-ml

PyrexR glass reagent bottles with ground glass
stoppers. The bottles were cleaned by rinsing
with concentrated HNO3 followed by rinsing with
Super-Q; each bottle was calibrated to contain
106 ml. The bottles were stored filled with a
gsolution of 5 percent (V/V) concentrated HNO3 +
0.1 percent (W/V) K2Cr207. Just prior to going
to sea, each bottle was drained and rinsed with
Super-Q.

Preserving solution for dissolved Hg samples:

The composition of this solution is 0.177 g
chrzo7 in 100 ml of concentrated HNO3
({Feldman ). Six ml of this scolution was
added to each Hg sample bottle, just prior to

going to sea.
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Sampling and preservation methods used for the

determination of dissolved and particulate metals

in the water column.

1.

Water sampling: The Niskin bottles were

attached to the stainless steel hydrowire which
was weighted by a lead weight enclosed in a
polyethylene bag. The Niskin bottles were
lowered to the appropriate sampling depths and
then triggered by dropping a stainless steel
messenger. At least 10 sec were allowed for
the top-drop to fall to the bottom. The
bottles were brought to the deck and secured

to a specially constructed PVC-lined wall

cabinet located inside the ship's wet-lab.

Niskin bottles: Tygon tubing and plastic

swagelok fittings were used to connect the
Niskin bottles to a tank of UHP N2 (see Figure
Al). The swinnex-—glass fiber filter assemblies
were attached to the Niskin outflow valves and
the bottles were pressurized to 20 psi maxi-
mum to force seawater through the swinnex
filter assembly. This arrangement permitted
(1) a measure of the total volume of seawater
passing through the filter; (2} the glass fiber
filter to be washed without contaminating
samples taken for dissolved metals; and (3)
rinsing of the sample bottle with the filtered
seawater sample prior to filling.

When the filter clogged, or after 1, 1.5,
or 2 1 of seawater had passed through the
filter, the swinnex assembly was disconnected

from each Niskin bottle. Seawater remaining
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in the swinnex assembly was forced through

the filter, using a plastic syringe, and dis-
carded, A second set of unfiltered samples,
collected through the shipboard Plunket system
(Hulse?4) and later filtered through NucleporeR
filters, provided a calibration for the concen-
tration of suspended solids (mg/l) obtained

on the glass fiber filters.

3. Preservation of the dissolved and particulate

metals samples: After returning to the land-

based laboratory (usually in about 14 hr),
the pH of the dissolved metals samples was
lowered to less than 2 using 3 ml of concen-
trated Ultrex™ HNO, per litre of sample. The
acidified samples were then stores in a
refrigerator at 4°C. The glass fiber filters,
containing the suspended solids, were trans-
ferred from the swinnex filter holders to
plastic MilliporeR petri dishes at the land-
based laboratory and stored in a freezer.
FPor the determination of dissolved Hg,
separate 100-ml aliquots of filtered seawater
were collected in the calibrated 125-ml PyrexR
reagent bottles which contained 6 ml of Hg
preserving solution. (See section I-A-7 or
Feldman89). These preserved Hg samples were
frozen until analysis could be performed.
Dissolved Hg samples were collected during the
December 1974 cruise only.

C. Decontamination of the apparatus used for the

analysis of dissolved and particulate metals

samples.
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300-ml BOD bottles for the dissolved Hg

analysis: These bottles were cleaned by
rinsing with concentrated HNO, followed by
Super-Q and then stored filled with a solution
of 5 percent (V/V) concentrated HNO3 + 0.1
percent (W/V) K20r207.

these bottles were emptied and rinsed with

Just prior to analysis

Super-Q.

polyethylene bottles: These bottles were

cleaned by rinsing with concentrated HC1
followed by rinsing with Super-Q. In addition,
the wide-mouth bottles, which were used for
digesting the suspended particulates filters,
were cleaned by adding 5 ml concentrated HNO,
and heating at 80°C for 2 hr. These bottles
were rinsed with Super-Q.

125-ml PyrexR glass separatory funnels (with

plastic stoppers and Teflon stopcocks) for the

dissolved metals analysis: These funnels were

cleaned by rinsing with concentrated HC1
followed by rinsing with Super-Q, concentrated
HNOB, and Super=-(3. Each funnel was completely
filled with Super-Q to displace acid vapors,
The funnels were calibrated to contain both

25 ml and 100 ml. Just prioxr to the actual
extraction of the samples, the separatory
funnels were pre-extracted according to the
extraction procedure.

Small volume plastic filtration apparatus:

This apparatus was used for filtering the digest
solutions of the suspended particulates filters.

{See Figure A2).
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S o

Sawed-off top of a 25-mm plastic Gelman® filtering
apparatus.

Sawed-off top of a 25-mm plastic swinnex filter
holder.

Bottom of a 25-mm plastic swinnex filter holder.

GelmanR glasgs fiber filter type A, 25-mm diameter
(pore size: see section I-A-4}.

Rubber stoppers.

Flastic tubing.

Narrow-mouth l-o0z polyethylene bottle.
Glass tubing to water aspirator.

Glass jar,

Plastic jar lid.

Figure A2, Small volume plastic filtration apparatus
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The filtering apparatus shown in Figure A2

was cleaned by aspirating concentrated HNO3

through the filter followed by Super-Q.
Analytical procedures used for the determination
of dissolved and particulate metals in the water
column samples.

1. BAnalytical procedure for the determination of

seawater samples were analyzed for dissolved
trace heavy metals within 9 months after
collection using the extraction procedure of
Duchart et al.’?

The preserved seawater samples taken
during any particular cruise (approximately
40 samples) were removed from refrigerated
storage and allowed to come to room tempera-
ture (20°C). A 100-ml aliquot was poured into
a calibrated 125-ml separatory funnel. A group
of 100-ml aliquots of Super—-Q served as
reagent blanks, Atomic absorption standards
were prepared by the method of additions;
minute quantities of mixed standard were added
to four 100-ml aliquots of a seawater sample.
The four resulting seawater plug standard
solutions contained an additional 1, 2, 4, and 8
ug/l of metal, respectively.

The pH of the samples and standards was
adjusted to 2 with NH4OH. Four ml of a 20
percent (W/V) sodium potassium tartrate solu-
tion was added and, after shaking, the samples
were allowed to stand for 15 min. The pH was
adjusted to 6 with NH4OH after which 4 ml of a
20 percent (W/V) sodium diethyl dithiocarbamate
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solution was added. Five ml of 4 methyl
pentan-2-0l (methyl isobutyl carbinol) were
added and the funnels shaken mechanically for
15 min, The organic and aqueous phases were
allowed to separate for 20 min. The aqueous
layer was then drained and the organic layer
collected in a l-oz wide-mouth polyethylene
bottle.

The AA measurements were performed on the
organic extract in the order of increasing
stability of the metal chelate complex. Mn,
Zn, Fe, and Cu were determined by aspirating
the extract into an air-C2H2 flame. Ag, Cd,
Pb, Ni, and Co were determined by injecting
the extract into a Heated Graphite Atomizer
(flameless AA) equipped with a grooved graph-
ite furnace tube.

Analytical procedure for the determination of

dissolved Hg in seawater: The preserved Hg

samples (100 ml seawater + 6 ml preservative)
were removed from frozen storage and, after
thawing, they were transferred from the re-
agent bottles to 300-ml BOD bottles. Stand-
ards were prepared by adding 100 ml of a Hg
standard solution (0.5, 1, 2, 3, 4, and 5 ug/l
Hg in Super-Q) plus 6 ml of preservative to a
300-ml BOD bottle. The reagent blanks were
prepared by adding 100 ml of Super—Q plus 6 ml
of a preservative to each of several 300-ml
BOD bottles.

To each solution (blank, standard, and

sample), 1 ml of 5 percent (W/V}) KMnO, solution

4
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was added. All solutions were then warmed on a
sand-bed hot plate at 60°C for 1 hr. Next, to
each BOD bottle individually, 5 ml of a 10 per-

cent (W/V) SnCl, plus 1 percent (V/V) concentrated

HCl solution were added and the bubbler of the
Perkin-Elmer Hg analysis system (see Figure A3)
immediately inserted into the BOD bottle. The
BOD bottle was swirled briefly to dissolve the
dark-brown MnOz. At this point the air flow
to sweep the Hg vapor into the absorption tube
was turned on. After recording the absorbance
solution [50 percent (V/V) concentrated HNO
plus 5 percent (W/V) K2Cr207].

Analytical procedure for the determination of

3

particulate metals in the water column: The

glass fiber filters containing the suspended
particulates were dried at 30°C for 48 hr.

Each filter was transferred from the MilliporeR
petri dish to a NalgeneR, l-o0z wide-mouth
polyethylene bottle. Five ml concentrated HNO3
were added to the bottle which was then tightly
capped and shaken to shred the glass fiber
filter. The bottle was placed on a sand-bed hot
plate and heated at 80°C for 2 hr. After the
digestion period, the solution was filtered
through the small volume plastic filtration
apparatus (see Figure AZ2). The filtrate was
collected in a NalgeneR, l-0z narrow-mouth poly-
ethylene bottle. The digesting bottle and the
filtering apparatus were washed with four 5-ml
aliguots of Super-Q; each wash was added to the

filtrate for a total volume of filtrate plus
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Hg optical absorption tube
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Hg vapor absorbing trap

Pinch clamp

Figure A3. Perkin-Elmer cold vapor Hg

analysis system
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wash = 25 ml, Reagent blanks were obtained by
adding one unused glass fiber filter plus 5 ml
concentrated HNO, to each of several NalgeneR,
l-o0z wide-mouth bottles.

Method of additions: AA standards were

prepared by adding minute quantities of mixed
standard to three 4-ml aliguots of a sample
digest solution. The three resulting solutions
of standard plus digest contained (1) an addi-
tional 0.5, 1, and 1.5mg/l of Mn, Zn, and Fe or
(2) an additional 5, 10, and 20 ug/l of Cu, Pb,
Cr, Ag, Co, Cd, or Ni. Fe, Mn, and Zn were
determined by aspirating the solutions into an
air—C2H2 flame. Cu, Pb, Cr, Ag, Co, and Ni
were determined by injecting the solutions into
an HGA equipped with a grooved graphite tube.

4., Analytical procedure for the determination of

particulate Hg in the water column: To deter-

mine Hg, 3 ml of the reducing solution [1
percent (W/V) SnCl2 + 1 percent (V/V} concen-
trated HCl] was injected into the small volume
Hg apparatus (see Figure A4) adapted from Hawley
and Ingle.90 After the air flow purged Hg

Z-HCl solution, 10

ml of a filter digest was injected into the

contamination from the sSnCl

small volume Hg apparatus. The peak absorbance
was recorded. This procedure was repeated for
10 ml of each Hg standard [0.5, 1, 2, and 3
Hg/1lHg in 5 percent (V/V)concentrated HNO
0.01 percent (W/V) KMn04].

I1. Trace heavy metals associated with bottom sediment and

3 plus

interstitial water.
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250-ml PyrexR separatory funnel

Rubber stopper

Tubing to water aspirator

3-way valve

Tubing to the Perkin-Elmer AA burner control
box: source of compressed air

Medium porosity sintered glass filter funnel
with rubber stopper

Rubber septum inserted into a glass tube

Hg optical absorption tube

3-way valve

Rubber stopper

Hg vapor absorbing trap

Bubble burette

Figure A4. Small volume Hg apparatus
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Decontamination of the apparatus used for sampling
bottom sediment and interstitial water. (Described
in Part II of main report]

Sampling and preservation methods used for the
determination of trace heavy metals associated
with bottom sediment and interstitial water,
(Described in Part II of main report)
Decontamination of the apparatus used for the
analysis of trace heavy metals associated with
bottom sediment and interstitial water.

1. Sediment leaching container: Four—-oz narrow-

mouth NalgeneR polyethylene bottles. These
containers were cleaned by rinsing with con-
centrated HCl followed by Super-Q. Ten ml of

concentrated HNO, was added to each bottle;

3
the bottles were capped tightly and then placed
on a sand-bed hot plate at 80°C for 2 hr. The
bottles were rinsed with Super-Q.

2. Containers for collecting the organic phase

during solvent extraction: One-oz wide-mouth

NalgeneR polyethylene bottles. These bottles
were cleaned by rinsing with concentrated HC1
followed by Super-Q. The bottles were stored
filled with Super-Q.

3. MilliporeR filtering assembly (see Figure AS5):

A MilliporeR filtering apparatus was mounted

on a 500-ml glass separatory funnel having a
Teflon stopcock. GelmanR glass fiber filters,
Type A, 47-mm diameter, were used in the
MilliporeR filtering apparatus (see section I-A-
4 for the filter pore size). The filters,

filter holder, and separatory funnel were
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h.

Top half of a 47 mm diameter glass MilliporeR filtering

apparatus.
Two 47-mm diameter GelmanR glass fiber Type A filters.
Bottom half of a 47-mm diameter glass MilliporeR
filtering apparatus.

90° glass elbow connected to a plastic tube which
serves as a vacuum release valve.

Rubber stopper.

500-ml PyrexR separatory funnel.

90° glass elbow connected to a water aspirator.
MilliporeR clamp for holding together the top and
bottom halves of the MilliporeR filtering apparatus.

Figure A5. Millipore filtering assembly
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cleaned by filtering concentrated HNO, through

3
the complete assembly. After draining the

concentrated HNO, from the separatory funnel,

3
the assembly was rinsed with Super-Q.

4, PyrexR glass volumetric flasks used to make

dilutions for atomic absorption analysis (Class
A; 50~, 25-, and 10-ml capacity): These flasks
were cleaned by rinsing with concentrated HNO,
followed by Super-0Q.

5. Glass 300-ml BOD bottles used for the analysis

of Hg associated with bottom sediment: They
were cleaned by rinsing with concentrated HNO3
followed by Super-Q and calibrated to contain
100 ml. Each bottle was filled with a solu-
tion of 5 percent (V/V) concentrated HNO3 +
1 percent (W/V) K2Cr207 (Feldman89
analysis, the HNO,-K,.Cr.O0. soaking solution was

3 7277277
removed and the bottle rinsed with Super-Q.

). Prior to

6. PyrexR 125-ml glass separatory funnels: (See

section I-C-3 for description and cleaning
procedures).
Analytical procedures used for the determination of
trace heavy metals associated with bottom sediment
and interstitial water.

1. Analytical procedure used for the determination

of trace heavy metals associated with bottom

sediment: Approximately 2.5 g of ground sediment,
weighed to the nearest 0.001 g, was transferred
to a 4-oz NalgeneR polyethylene narrow-mouth
bottle, Ten ml concentrated HNO3 was added.

The tightly capped bottle was placed on a sand-

bed hot plate at 80°C for 2 hr. After the 2-hr
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period, the digest was filtered through two
Gelmaa® glass fiber Type A filters using the
MilliporeR filtering assembly (see Figure

A2). The filtrate was collected in a 50-ml
PyrexR volumetric flask. The plastic digest
bottle and the filtering apparatus were washed
with Super-Q and the washes added to the fil-
trate. The solution was diluted to 50 ml and
then shaken. Processing 10 ml of concentrated
HNO, as a sample provided a reagent blank.

3
Method of additions: AA standards were

prepared by adding minute guantities of mixed
standard to three 10-ml aliquots of a digest
solution. The three resulting digest plus
standard solutions contained an additional 0.5,
1, and 1.5mg/1 metals, respectively. The

H
272
flame. Absorbances of the samples and standards

solutions were aspirated into an air-C

were recorded. When required, the samples were
diluted with Super-Q +t+o keep absorbance readings
within the linear range of the AA,

Analytical procedure used for the determination

of Hg in bottom sediment: Approximately 1.0 g

of ground sediment, weighed to the nearest
0.001 g, was transferred to a 300-ml glass BOD
bottle. Ten ml concentrated HNO, was added.

The bottle was stoppered and the HNO,-sediment

mixture allowed to digest at room teiperature
for 24 hr, with occasional swirling. Ten ml
concentrated HNO3 in a stoppered BOD bottle served
as a reagent blank. To each BOD bottle, 25 ml of

a 5 percent (W/V) KMnO4 solution was added.
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The stoppered BOD bottles were placed on a
sand-bed hot plate at 60°C for 1 hr, after
which the samples were diluted tc 100 ml with
Super-Q. The standards were prepared by add-
ing 100 ml of a Hg standard solution [0.5, 1,
2, 3, 5, 10, and 20 ug/1 Hg in 5 percent (V/V)
concentrated HNO3 plus 0.01 percent (W/V)
KMnO4] to a BOD bottle,

Next, each BOD bottle was treated individually

as follows. Twenty ml of a 1.5 percent (W/V)
NHZOH-HCl solution was added and the solution
swirled briefly while the brown Mno2 dissolved.
Five ml of a 10 percent (W/V) SnCl2 plus 1
percent (V/V) HCl solution was added and the
bubbler of the Perkin~Elmer Hg analysis system
(See Figure A3) immediately inserted into the
BOD bottle. After briefly swirling the con-
tents of the BOD bottle, an air pump was turned
on which cycled the Hg vapor through the ab-
sorption cell. The absorbance was recorded
while the Hg vapor from each sample circulated
through the cell,.

Analytical procedure used for the determination

of trace heavy metals in interstitial water:

Mn and Zn concentrations were determined
directly by aspirating the interstitial water
into an air—C2H2 flame,

Method of additions: AA standards (+0.5,

+1l, 42, +3, and +10mg/1 metal} were prepared

by adding minute quantities of mixed standard
to 100-ml aliquots of seawater., The metal

concentrations were recorded directly by using
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the concentration mode and curve straightening
capabilities of the AA.

Cu and Fe were determined directly by
injecting the interstitial water into the HGA
{flameless AA).

Method of additions: BAA standards, in

concentrations ranging from +1 to +500 ug/1,
were prepared by adding minute gquantities of
mixed standards to 10-ml aliquots of seawater.

P, Cd, Ni, Co, and Ag were extracted
from interstitial water samples according to
the extraction procedure of Duchart et al.’?
A 25 ml aliquot of interstitial water was
poured into a calibrated 125-ml separatory
funnel. Twenty-five-ml aliquots of Super-Q
served as reagent blanks.

Method of additions: AA standards (+1,

+2, 44, and +8 ug/1) were prepared by adding
minute quantities of mixed standard to 25-ml
aligquots of seawater. The pH of the solutions
was adjusted to 2 with NH4OH. Two ml of a 10
percent (W/V) sodium potassium tartrate solution
were added to each separatory funnel. After
shaking, the funnels were allowed to stand for
15 min. The pH was then raised to 6 with

NH4OH. Two ml of a 10 percent (W/V) sodium
diethyl dithiocarbamate solution was added to
each funnel followed by the addition of 5 ml

of 4 methyl pentan-2-ol (methyl isobutyl
carbinol). The funnels were mechanically shaken
for 15 min after which the organic layers were

allowed to separate for 20 min. The aqueous
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layer was drained and the organic layer
collected in a 1l-0z wide-mouth polyethylene
bottle. Ag, Cd, Pb, Ni, and Co were determined
by injecting the extract into an HGA equipped
with a grooved graphite furnace tube.

4. Analyvtical procedure used for the determination

of Hg in interstitial water: Immediately after

squeezing the core segment, 10 ml of inter-
stitial water were placed in a 25-ml glass
volumetric flask. One ml of concentrated HNO3
and 1 ml of a 5 percent (W/V) KMnO4

were added to the flask. The flask was stoppered
and then heated on a sand-bed hot plate at 60°C
for 1 hr. Standards were prepared by adding

10 ml of a Hg standard solution (0.5, 1, 2, and

soluticn

3 uyg/1 Hg in Super-Q) plus 1 ml concentrated HNO

Lo

plus 1 ml of a 5 percent KMnO4 solution to a
25-ml volumetric flask. Super-Q reagent blanks
were prepared in a similar manner.
Three ml of reducing solution [l percent
(W/V) SnC12 + 1 percent (V/V) concentrated HC1]
was injected into the small volume Hg apparatus
(see Figure A4) adapted from Hawley and Ingle.90
While the air flow purged Hg contamination from
the reducing solution, 0.5 ml of a 1.5 percent
(W/V)\NHon-HCl solution was added to one of
the 25-ml volumetric flasks. After briefly
swirling to dissolve the MnO,, the contents of
the flask were transferred to the small volume
Hg apparatus and the peak absorbance recorded.
III. Instrumentation and data reduction,
A. Instrumentation.

l. Spectrometer and associated equipment for
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metal analyses:

a. Perkin-Elmer Model 403 Atomic Absorption
Spectrometer.

b. Perkin-Elmer HGA 70 (Heated Graphite
Atomizer) with modifications for gas
interrupt and variable charring temperature
{(Segar and Gonzalez;91 Kahn and Slavin92).
The purge gas selected was 0.5 percent
methane in Ar (UHP).

c. Perkin-Elmer Deuterium Arc Background
Absorption Corrector (Kahn93).

d. Perkin-Elmer single element hollow
cathode lamps.

e, Hewlett-Packard Model 7100 B strip chart
recorder.

f. Perkin-Elmer cold vapor Hg analysis system
{(see Figure A3).

g. 8Small volume Hg apparatus adapted from

20

Hawley and Ingle (see Figure 24).

2. Instrumental settings: Recommended in the 1971

Perkin-Elmer handbook entitled "Analytical
Methods for Atomic Absorption Spectrophotometry",
were used with the exception that the Pb 2170
R line was used rather than the recommended Pb
2833 R 1ine.
Data Reduction
A Hewlett-Packard Model 9830A Programmable
calculator/plotter was used to perform all calcu-
lations. A polynominal regression program calcu-—
lated and plotted the slope and intercept of the
concentration vs. absorbance standard curves. The

program also calculated the concentrations of

metals in the samples according to the following
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formulas:

l. Seawater and interstitial water: The metals

concentration [Mn] was calculated from:

_ nanograms dissolved metal 1
[Mn] ml of water sample (ug/1)

Il

(absorbance of the sample -

absorbance of the blank)
X (slope of the standard curve)

where the slope of the standard curve has units
of ng/ml/absorbance.

2. Sediment: The metals concentration [MS] is

calculated from:

- micrograms metal
) = gram of sediment sample (ng/9)

Il

(absorbance of the sample -
absorbance of the blank)

X (slope of the standard curve)
(volume of the sample digest

% solution: 50 ml)

(weight of sample, grams)
x (dilution factor)

where the slope of the standard curve has units
of ug/ml/absorbance.

3. Suspended particulates: The metals concentration

(ug/1)

M ] = micrograms metal
sp liters of seawater filtered through
glass fiber filter

il

{absorbance of the sample -
absrobance of the blank)

x (slope of the standard curve,
ng/ml/absorbance)

X (volume cf the sample digest
sclution: 25 ml)

+ (volume of seawater filtered, liters )
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Iv.

Petection limits and precision and detection limits
tables.

A.

Definitions of the terms used in the precision and
detection limits tables.
l. Smallest Measurable Difference (SMD): Calcu-

late the SMD by substituting the smallest
measurable difference in absorbance into the
equations for calculating the concentration

of metal in the sample, The units are concen-
tration,

2. Instrumental Uncertainty or Atomic Absorption

Noise {AA Noilse): AA Noise was defined as 0.5

the width of the recorder pen baseline. The
units are + absorbance. When substituted into
the formulas for calculating the concentration
of metals in the samples, the + absorbance be-
comes the uncertainty in the concentration of
a sample (e.g. +mg/1) due to instrument noise.
3. Detection Limit (DL): The DL was defined as

twice the uncertainty in the concentration of a
sample due to instrument ncise (as defined
above). For example, if the instrument noise
produces an uncertainty of + Xmg/1l, (as de-
fined above), then the DL concentration is
defined as 2Xmg/l. This implies a minimum un-
certainty of at least + 50 percent for concen-
trations near the DL:

+ X mg/l

x 100 = + 50%
2Xmg/1

In general, the magnitudes of the AA Noise,
SMD, and DL will vary with different instru-

mental conditions, different metals, and
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different sample types.

4, Range of Sample Concentrations:

n 1is defined as the number of samples for
which the concentration of a specific
trace heavy metal has been determined.

low designates the lowest concentration value

in the set of n concentration values ob-
tained by analyzing n samples for a
specific trace heavy metal.

high designates the highest concentration value
in the set of n concentration values ob-
tained by analyzing n samples for a specific
trace heavy metal.

avg designates the average concentration value
for the set of n concentration values ob-
tained by analyzing n samples for a
specific trace heavy metal.

o designates the standard deviation for the
set of n concentration values cobtained by
analyzing n samples for a specific trace
heavy metal.

5. Precision of the AA Instrument: The HGA instru-

mental precision was calculated by dividing the
standard deviation (OAA) of a series of ab-
sorbance measurements (nAA) by the average

(XAA) of the series: OAA/XAA' where

i=n

= AA

Xan = E Xi/Man
i=1

The series of absorbance measurements was obtained
by repeated injection of one sample solution into
the HGA furnace tube.
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The flame instrumental precision was calculated
by dividing the AA Noise by the concentration
of the sample:

low

high

AR Noise/Xj where J = avg.) .

Precision of the Analytical Procedure: The

precision of the analytical procedure was ob-

analysis)
of one sample through the entire analytical pro-

tained by taking several aliquots (n

cess of sample preparation and instrumental
analysis, The precision was calculated by

dividing the standard deviation (¢
for the {(n

value (X

analysis)

analysis) aliquot values by the average

3 obtained from n aliquots:

analysis

/X

analysis

Oanalysis

i=n .
= _ analysis
where Xanalysis B E Xi/nanalysis.

i=1

analysis

Precision of the Sampling Procedure: The precis-

ion of the sampling procedure was determined by

)

taking several independent samples (n .
sampling
from one sampling location through the entire
analytical process of sample preparation and
instrumental analysis. The precision was cal-
culated by dividing the standard deviation

samp;ing) of the
/X sampling,

(o } by the average (X

sampling

replicates: o©

nsampling sampling

i=n .
where X ) = E sampling,
sampling X1/nsampling'
i=1
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V.

B.

Tables Al, A2, A3, and A4 summarize the precision

and DL of the methods for trace heavy metal analysis.

Reagents and standards

A'

Reagents
All reagents and standards used were American Chemical
Society quality or ultra pure.
1. Water: Super-Q, MilliporeR ultrapure water
system composed of a 0.5-p prefilter, an
organic contaminant exchange column, an ionic
exchange column, and a 0.22-y final filter.

Supexr-Q SystemR water quality specifications:

Dissolved inorganicsn@/d_CaCO3 0.025
Dissolved Organics mg/1 <1,
Specific resistance

megohm-cm @ 25°C 18.
Particles and microorganisms <0.22

micron dia.

2. ACS HCl (J. T. Baker Chemical Co.): 37.3
percent by weight.

3. ACS HNO3 (J. T. Baker Chemical Co.}: 70.3
percent by weight.

4. UltrexR HNO3 {(J. T. Baker Chemical Co.):
70.2 percent by weight.

5. NH49§_(Fisher Scientific Ceo.) minimum concen-

tration 28 percent by weight.
6. 4 methyl pentan-2-o0l (methyl isobutyl carbinol,

MIBC): (Eastman Co.)
7. 20 percent (W/V) sodium diethyl dithiocarbamate

(NaDpC) : (Fisher Scientific Co,.) 20 g NaDDC
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LET

Zrecisicn and setection Limits:

Table &4

(8ee Appendix Section IV-A for the definitions of <he terms in this table.)

Ag Cd o or Su Fe He M Ni Fb Ir
Average SMD (mg/2) 0.1k 7.09 2 £ 5 0.22x12°  5.38 c.07x103 3.2 5 5.03x10°
Average AA (+ mg/l) J.18 .17 o 5 5 a 22&103 3.38 J 07x103 7 7 0 03x103
Average DL (mg/i) G.33 0.35 3 g 10 G.i4x10” G.76 3.1-x103 13 i3 & 86x133
Range of Sample
Concentrations (mg/1):
r 190 164 192 192 92 3 142 192 3 igo 178
low CLED 0.06 1¢ 22 2x106 .81 1.9X103 40 G.OG#X%O“
high 23.65 15.32 1173 2297 333.5x103 18,49 56.9x17 1043 29.9x10
average 5.63 2.52 177 220 28.7x103 L4,88 4,67 3 165 O.QSOxlg
G 2.46 2,17 136 166 1%, 48210 2.E2 2.85x10 2y 1.77x10
Precision of the AA
Instruament:
Ry 5 g (1c,5) (4,4,8) NA¥ NA HA 5 NA
g AA i.02 0.39 <24> <53> lNoise Noise Noise 5 Neoise
10w conc. range 1.7 5.5 1.25 2.4 0,31 G456 0.13 7.2
At high conc. rarge 0.04 2,03 Q.02 3.c2 0.col G.02 0.005 C.ocl
average conc. range J.20 J2.15 J.14 0.24 2,01 0.c8 0.C3 J,03%
Precision of the
nalytical Frocedure:
¥ VA i f: KA HA
Panalysis NA K4 NA N& NA NA N& Ka N HA
HA I b J kN 4 \ ) n wr
UAnalysis NA NA WA NA NA XA NA N4 N& NA NA
low cone. range NA N4 NA j NA NA NA NA NA NA NA
avg. conc. range NA NA NA NA NA NA NA NA KA NA NA
Precision of the
Sampling Procedure:
"sampling #eS>(x3) <53 (x5) <5>(x5)  <5>{(x3)  <5>(x5)  <5> (x5) <5>(x5) <5»{x5)  <5»(x5)
“sampling <l.2> <1.89> <58>» <60> <b> <1.61> <g.U> <21.4> <5, 7>
low conc. range 2 3i.5 3,05 2.7 P 1.99 0.33 0.54 lu2s
At hilgh cone. range 0.0%5 .12 0.05 0.073 C.01 0.09 0.0% 0.02 J.19
average cone. range o.24 0.75 0.33 0.27 .14 0,34 0.0 0,13 5.8

*Not Applicable (Because 1 filter cannot be carried through the analysis 5 times, i.e. more than once)

*¥% <Average>



diluted to 100 ml with Super-Q., Filter and
extract the solution with MIBC to remove
trace heavy metals.

8. 20 percent (W/V) sodium potassium tartrate (NaKT):
(Fisher Scientific Co.) 20 g NaKT + 0.5 g NaDDC
diluted to 100 ml with Super-Q. Filter and ex-
tract the solution with MIBC to remove trace heavy

metals.

267,04

Scientific Co.} diluted to 100 ml with concen-
trated HNO.,.

9. Hg preserving solution: 0.177 g K {(Fisher

3
10. 5 percent (V/V) concentrated HNC., + 0.1 percent
(W/V) K295297: 5 ml concentrated HNO3 + 0.1 g
K2CR207 diluted to 100 ml with Super-Q.

11. 5 percent (W/V) KMnO,: 5 g KMnO, (Fisher Scien-

tific Co.) diluted to 100 ml with Super-Q.
12. 1.5 percent (W/V) NHZOH-HCl: (Fisher ScientificCo.)

1.5 g hydroxyl ammine hydrochloride diluted to
100 ml with Super-Q.

13. 10 percent (W/V) SnCl2 + 1 percent {(V/V) concen-
trated HCl: 10 g SnCl2 (Fisher Scientific Co.) +
1 ml concentrated HC1l diluted to 100 ml with
Super-9Q.

Standards

One of the following metals or metal salts (Table
A5) was added to a 100-ml class A velumetric flask
and dissolved in 10 ml of a 50 percent (V/V) concen-
trated HNO3 solution. The resulting solution was
diluted to 100 ml with Super-Q.

238
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Table A5

Concentrations of Standards#

Metal
- ' Welight Concentration
ﬁetal or Salt g mg/1 Supplier
CO(N03)2.6H20 0.49368 9398.6 JMC
chqu 0.37430 1001.95 Fisher
MnSDu.H2O 0.30881 G83.7 Allied Chemical
‘PD(NO3)2 0.16608 1037.8 Alfa-Ventron
cd 0.15006 1500.6 Alfa-Ventron
Cu 0.09273 927.3 Baker
Fe 0.10400 1040.0 Baker
N1 0.10028 1002.8 Alpha-Ventron
Zn 0.17720 708.8 Alpha-Ventron
AgNO3 0.15957 1013.3 Fisher
*Hg standard: 0.1380 g HgCl, + 50 ml concentrated HNO., + 0.1 g K,Cr

2

3

207

diluted to 1 & with Super-Q for a Hg standard of 102.2

mg/l Hg.



APPENDIX B':

WATER COLUMN OBSERVATIONS DURING CRUISES

ACE 11,

ACE III, ACE 1V, ACE V, ACE VI, AND ACE VII

Figures

B1-B6
B7-Bl2
B13-B18
B19-B24
B25-B30
B31-B36
B37-B42
B43-B48
B49-B54
B55-B60
B61-B66
B67-B72

Variable

Temperature

Dissolved oxygen concentration
Ammonium concentration

Nitrite concentrations

Nitrate concentrations

Silicic acid concentration
Dissolved phosphate concentration
Total phosphorus concentration
Particulate nitrogen concentration
Particulate carbon concentration
Chlorophyll-a concentration

Suspended solids concentrations
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Pages
241-246
247-252
253~258
259-264
265-270
271-276
277-282
283-288
289-294
295-300
301-306
307-312
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Figure Bl.

Temperature observations during 5-6 December 1974.
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Figure B2.

Temperature observations during 13-14 January 1975,
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Temperature observations during 23-24 April 1975,

X= | METERS
0= % METERS
+=9 METERS
g4 = METERS
) 2 "METERS
B+
.2+
a2+
A+
A+
A4
) rad HS BER 8D5E {BH Iad IER 7L 15d 31
IX ! 3z ' kR ITDSH I 2ic3 |llD IIEK 4P l IeM 4, 1BT | ZAY |
N i ;l l S f[.};l': ol 1 i-rl i;:i i '
&28 BER | 288 ISRR | BER EAR =] 404} 12014 |15BA
LOCAL TIME
RCE VI



ove

TEMPERATURE (C.)

IE.

i2.

8.

METERS
METERS
METERS
al METERS
METERS
72 [1]
h
A+ »
c ] [\]
E-»
'B.J.
a-.
B.«-
7 *K\\*(,/f//)ﬁ\\*
FAf 45 ER BDSE 1 BH 2} iER 1T 1au 21K
IX ]_32 [gﬂ ]755{4 l 151 [ D 1135( t4p ] £ I lETl 28y |
BIR 3R 1287 |5P@ 18827 ERA Spg | ZER 15R7
LOCAL TiME
RACE VI

Figure B6. Temperature observations during 28-29 May 1975.
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Figure B8. Dissolved oxygen concentrations during 13-14 January 1975.
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Dissolved oxygen concentrations during 19-21 March 1975.
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Figure Bll. Dissolved oxygen concentrations during 23-24 April 1975.
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Dissolved oxygen concentrations during 28-29 May 1975,

B
[ X= |  METERS
=%  METERS
1 +=193  METERS
2 %= |4 METERS
#= 22 METERS

H-.—

B+

z.._

2]
E_..
.B“‘L‘ . o - . [ 7]
1]
(]
E... [~
] | u
1]
E-T ;j‘m!!!!!!
ﬂ-o-
2Y 45 1 BDSR 1BH [4]
iX l 3z lSﬁ i?DSﬂ 1 l VD lIBK H
.8 ‘ L A . { = . +
0% =20 | 268 [SAN [EAE  B@E =l | 281 I507
LOCHL TIME
ACE Vi



£E5Z

NHY CuM)

qa.ﬂ-r

X= ] METERS

O= & METERS

+= 7 METERS

JR.H+ = |4 HMETERS

: H#= 22 METERS
Ja.2+
5.8+
0.8+
IS. B+
[@8.8+
5.B4

= K i3 30 1o
2.2 f -+ L n } Ly } Bk —
EBA 508 1201 iEAR 1887 BAR j=141%) | 288 1588
LOCAL TIME
ACE |1

Figure B1l3.

Ammonium observations during 5-6 December 1974,
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Figure Bl4. Ammonium observations during 13-14 January 1975
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Figure B15. Ammonium observations during 19-20 February 1975.
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Figure B19, Nitrite observations during 5-6 December 13974.
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Figure B20. Nitrite observations during 13-14 January 1975,
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Figure B22.

Nitrite observations during 19-21 March 1975.
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Figure B23.

Nitrite observations during 23-24 April 1975,
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Figure B24.

Nitrite observations during 28-29 May 1975.
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Figure B25.

Nitrate observations during 5-6 December 1974.
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Nitrate observations Quring 13-14 January 1975.



NO3 CuM>

L9¢

METERS
METERS
METERS
METERS
METERS

X +100X
T T
h - 10 b —

¥ I g

ZY H5 ER BH 1y 13V IET 17K 158
X 3z ER 78 gp LK E2H [Hu IBL 18A
[ R L1 N F il P il

11" 2103 ) vt iBEA BBl =5t 1288 1598

LOCAL TIME
RCE 1V

Figure B27. Nitrate observations during 19-20 February 1%75.
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Figure B28.

Nitrate observations during 19-21 March 1975.
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Figure B29,

Nitrate observations during 23-24 April 1975.
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Silicic acid observations during 5-6 December 1974.
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Figure B3Z.

Silicic acid observations during 13-14 January 1975.
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Silicic acid cbservations during 19-20 February 1975.
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Silicic acid observations during 19-21 March 1975,
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Figure B35.

Silicic acid observations during 23-24 April 1975.
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Figure B36.

Silicic acid observations during 28-29 May 1975.
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Dissolved phosphate observations during 5-6 December 1974.
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Figure B38.

Dissolved phosphate observaticns during 13-14 January 1975.
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Figure B39. Dissolved

phosphate observations during 19-20 February 1975,
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Figure B40,

Dissolved phosphate observations during 19-21 March 1975.
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Figure B41.

Dissolved phosphate cbservations during 23-24 April 1975,
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Figure B42Z,

Dissolved phosphate cbservations during 28-29 May 1975.
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Total phosphorus observaticons during 5-6 December 1974.
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Figure B44.

Total phosphorus observations during 13-14 January 1975.
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Figure B45. Total phosphorus observations during 19-20 February 1975.
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Figure B46,

Total phosphorus

observations during 19-21 March 1975.
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Figure B47.

Total phosphorus observations during 23~24 April 1975,
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Figure B48, Total phosphorus observations during 28-29 May 1975.
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Figure B49. Particulate nitrogen observations during 5-6 December 1974,
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Particulate nitrogen observations during 13-14 January 1975,
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Figure B51.

Particulate nitrogen observations during 19-20 February 1975.
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Figure B532. Particulate nitrogen observations during 19-21 March 1975.
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Figure B53, Particulate nitrcgen cbservations during 23-24 April 1975,
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Particulate nitrogen observations during 28-29 May 1975,
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Particulate carbon observations during 5-6 December 1974.
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Figure B56.

Particulate carbon observations during 13-14 January 19275.
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Figure B57.

Particulate carbon observations during 19-20 February 1975,
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Figure BS58,

Particulate carbon observations during 19-21 March 1975.
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Figure B59.

Particulate carbon observations during 23-24 April 1975,
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Figure B60.

Particulate carbon observations during 28-29 May 1975.
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Figure B6l. Chlorophyll—g_observations during 5-é December 1974,
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Figure B62. Chlorophyll—g_ cbservations during 13-14 January 1975,
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Figure B63.

Chlorophyll-a

observations during 19-20 February 19%75.



Z27.8—r

ZiH

X=1 METERS
O=k METERS
+=19 METERS
24 B *= |4 METERS
#= 22 METERS
2].B+
P')E IBE.B+ —
™~
o
K
ul: [s.u"'
3
w
S~
ST 1284
]
e
o
6 q.804+
BE.A+
3.8+
2y 45 B8 BDSA __ IBM 124 ISR 7L 18y
X |3z = | TsE ) EE o HlDo i3 e I AT ay
.4 e L+ # L S LS mman
&ad oan 12PR E2A 2t {281 =il Sag {287
LOCAL TINME
ACE ¥

Figure B64. Chlorophyll-a observations during 19-21 March 1975,
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Figure B65. Chlorophyll-a observations during 23-24 April 1975.
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Figure B6&6.

Chlorophyll-a observations during 28-29 May 1975.
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Figure B67. Suspended solids observations during 5-6 December 1974,
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Figure B68. Suspended solids observations during 13-14 January 1975,
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Figure B6%9. Suspended solids observations during 19-20 February 1975,



ote

SUSPENDED SOLIDS (mg/1)

Figure B70. Suspended solids observations during 19-21 March 1975,

32 .81
[ X=1  METERS
=5 METERS
£ *= ETER
23.2 #= 22 METERS
24.04
0.8+
5.8
12.8+
B.pE+
4.0
2y Hs BB mER i O Ry
X 2 SR 7p58 s 1y 7 1EK
N A ) I B L ,
524 24 17230 EBRB 21404 | 284 =35} =115 | 208
LOCHL TIME
ACE V



T1E
SUSPENDED S0L.1DS (mg/1)

METERS
METERS
METERS
METERS
METERS

=11 ] —
LT o

=
O=
+ =
=
d=

|
ERE 21514 1228 15A7 Rsll (501 =1l 1207 Y
LOCRL TINME

RCE Vi

Figure B71. Suspended sclids observations during 23-24 April 1975,
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Figure B72. Suspended solids observations during 28-29 May 1975.
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